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Welcome

We are pleased to organize the 1st Seminar on Control and Optimization
during 11-12 October 2017 in Iran. The seminar provides a forum for mathe-
maticians worldwide and scholar students to present their latest results about
all aspects of control theory and optimization such as mathematics control,
control in biology, fuzzy control, stochastic control, project control, linear and
nonlinear optimization, neural network and related topics, and discuss their
recent researches with each other. The organizing committee of the semi-
nar warmly welcomes the participants to Mashhad, hoping that their stay
in Mashhad will be happy and fruitful. About 120 participants have taken
part in this seminar. We have made every effort to make the seminar as
worthwhile as possible. We wish to express our thanks to all whose help has
made this gathering possible. In particular, we would like to express our grat-
itude to the administration of Ferdowsi University of Mashhad, the Iranian
Mathematical Society, Academy of Sciences of the Islamic Republic of Iran,
Center of Excellence in Analysis on Algebraic Structures, Center of Excellence
on Modelling and Control Systems. The organizing committee would like to
thank the many people who co-operated to make the seminar a success and
this proceeding possible.

Chair
Sohrab Effati
Scientific Chairs
Mohammad Hadi Farahi and Hamed Reza Tareghian
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RANKING HESITANT FUZZY SETS USING THEIR
HORIZONTAL REPRESENTATION

BAHRAM FARHADINIA∗

Department of Mathematics, Quchan University of Advance Technology, Quchan,
Iran; bfarhadinia@qiet.ac.ir

Abstract. This paper presents a novel method for ranking hes-
itant fuzzy sets (HFSs) based on transforming HFSs into fuzzy
sets (FSs). The idea behind the method is an interesting HFS de-
composition that seems to be a missing discussion in the relevant
literature and we refer to it as the horizontal representation.

1. Introduction

A large number of ranking methods for FSs have been suggested
in the literature so far [2]. However, few studies focus on the ranking
methods for HFSs [1]. To put forward some formulas to get the ranking
order of HFSs, we are motivated to propose a new ranking method for
HFSs which is intuitive in nature, computationally simple and easy to
implement.

2. Transformation of HFSs into FSs

Throughout this article, we use X = {x1, x2, ..., xN} to denote the
discourse set. A fuzzy set(FS) A on X is defined as A = {⟨x,A(x)⟩ :
x ∈ X}, where A(x) is the degree of membership of x ∈ X in A. We

2010 Mathematics Subject Classification. Primary 03E72; Secondary 94D05.
Key words and phrases. Hesitant fuzzy sets, Horizontal representation of HFSs,

Vertical representation of HFSs, Ranking method for HFSs, Hesitant multi-
attribute decision-making.
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denote all FSs on X by FS(X). Formally, any aggregation operator
on a collection of n FSs A1, A2, ..., An defined on X is characterized by
a mapping

σ : [0, 1]n → [0, 1],

σ(A1(x), A2(x), ..., An(x)) := Aσ(x), ∀x ∈ X,

where Aσ is called the aggregated fuzzy set and also Aσ ∈ FS(X).
For a collection of FSs Ai(i = 1, 2..., n) and the weight vector of Ai,
denoted by W = (w1, w2, ..., wn) with wi ∈ [0, 1] and

∑n
i=1wi = 1, then

the fuzzy weighted averaging (FWA) operator is defined as:

FWA(A1, A2, ..., An) = ⊕n
i=1(wiAi) = 1−

n∏
i=1

(1− Ai)
wi .

Now, inspired by the fact that ”aggregation operations on fuzzy sets are
mappings by which a collection of fuzzy sets are combined in a desirable
way to give rise to a single fuzzy set”, we establish a transformation of
HFSs into FSs. A hesitant fuzzy set (HFS) H on X is defined [1] in
terms of a function hH(x) when applied to X returns a finite subset of
[0, 1], i.e.,

H = {⟨x, hH(x)⟩|x ∈ X}, (2.1)

where hH(x) is a set of some different values in [0, 1], representing the
possible membership degrees of the element x ∈ X to H. We denote all
HFSs on X by HFS(X), and for convenience, we call hH(x) a hesitant
fuzzy element (HFE) [3]. Now, we introduce a new concept of a HFS
which is called a κ−level set of the HFS and expressed in the following
definition:

Definition 2.1. For given H ∈ HFS(X), we define the fuzzy set h
[κ]
H

as the κ−level set of HFS H where

h
[κ]
H (xi) =

{
h
δ(κ)
H (xi) if κ ≤ lH ,

h
δ(lH)
H (xi) if κ > lH ,

(2.2)

where h
δ(κ)
H denotes the k-th largest element, and moreover, the num-

ber of κ−level sets of HFS H is lH .

Proposition 2.2. The κ−level sets of the HFS H are increasing with

respect to κ, that is, if κ1 ≤ κ2, then h
[κ1]
H ⪯ h

[κ2]
H .

As a corollary of Proposition 2.2, we can conclude for any κ−level
set of the HFS H that

h
[1]
H ⪯ h

[κ]
H ⪯ h

[lH ]
H , 1 ≤ κ ≤ lH , (2.3)
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RANKING HESITANT FUZZY SETS

which implies that any κ−level sets of a HFS H is bounded from below
and bounded from above. The following argument shows that there are
two ways of representing a HFS.
The first one is the most commonly used representation of a HFS that
we refer to as the vertical representation. It is based on HFEs of HFS
H and expressed by

H =
∑

xi∈X
hH(xi),

where
∑

denotes union over all xi ∈ X.
The second one that does seem to be a major missing discussion in the
literature is that we refer to as the horizontal representation.
Before we further discuss on the second representation, it needs to
consider the relation between HFEs and κ−level sets of HFS H, where
for any fixed xi ∈ X

hH(xi) =
∑

1≤κ≤lH
h
[κ]
H (xi), (2.4)

where
∑

denotes union over all 1 ≤ κ ≤ lH .
Now, we introduce the second representation as follows:

Theorem 2.3. (Horizontal representation) A HFS H is represented
by the union of all its κ−level sets, that is,

H =
∑

1≤κ≤lH
h
[κ]
H , (2.5)

where
∑

denotes union over all 1 ≤ κ ≤ lH .

The horizontal representation would be an interesting HFS decom-
position as we have not discovered it in the relevant literature. As will
be seen later, the transforming method of HFSs into FSs is established
on the basis of this novel representation. Taking a look at the con-
cept of κ−level sets introduced in Definition 2.1, we define comparable
HFSs as follows:

Definition 2.4. The two HFSs H1 and H2 are said to be comparable

and denoted by H1 ⪯ H2 (or H1 ⪰ H2) if and only if h
[κ]
H1

⪯ h
[κ]
H2

(or

h
[κ]
H1

⪰ h
[κ]
H2
) for any 1 ≤ κ ≤ max{lH1 , lH2}. In the case that lH1 < lH2 ,

to operate correctly, put h
[κ]
H1

= h
[lH1

]

H1
for all κ > lH1 .

Definition 2.5. Let H ∈ HFS(X) and σ : [0, 1]lH → [0, 1] be an
aggregation operator given by (Agg1). Then, corresponding to HFS H
we define the following FS

Hσ := σ(h
[1]
H , h

[2]
H , ..., h

[lH ]
H ), (2.6)
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where h
[κ]
H ’s, (1 ≤ κ ≤ lH) are κ−level sets of HFS H.

3. New ranking method for HFSs

Proposition 3.1. Let H1, H2 ∈ HFS(X) with lH := lH1 = lH2, and
FWA : [0, 1]lH → [0, 1] be the aggregation operator given by (Agg1).
Corresponding to HFSs H1,H2 we define

HFWA
1 := FWA(h

[1]
H1
, h

[2]
H1
, ..., h

[lH ]
H1

), (3.1)

HFWA
2 := FWA(h

[1]
H2
, h

[2]
H2
, ..., h

[lH ]
H2

), (3.2)

where h
[κ]
Hi
’s, (1 ≤ κ ≤ lH) are κ−level sets of HFSs Hi, i = 1, 2.

Then, there is a correspondence between the ranking of HFSs H1, H2

and the ranking of their aggregated FSs HFWA
1 , HFWA

2 that can be stated
as

H1 ≺ H2 iff HFWA
1 ≺ HFWA

2 ,

H1 ≻ H2 iff HFWA
1 ≻ HFWA

2 ,

H1 ≈ H2 iff HFWA
1 ≈ HFWA

2 .

Algorithm 3.2. (The new method for ranking HFSs)
Let {H1, H2, ..., Hm} be a collection of m HFSs on X = {x1, x2, ..., xN}.
Then, use the following steps to find the ordering of given HFSs.
Step 1. For any HFS Hi (i = 1, 2, ...,m), we construct the correspond-

ing κ−level sets h
[κ]
Hi
’s (κ = 1, 2, ..., lHi

) using Definition 2.1.
Step 2. Using Definition 2.5 in which the aggregation operator σ is
that given by (Agg1), we construct the aggregated FS

HFWA
i := FWA(h

[1]
Hi
, h

[2]
Hi
, ..., h

[lHi
]

Hi
),

corresponding to each HFS Hi (i = 1, 2, ...,m).
Step 3. Known by Proposition 3.1, the ordering of HFSs {H1, H2, ..., Hm}
can be achieved according to the ordering of their aggregated FSs
{HFWA

1 , HFWA
2 , ..., HFWA

m }.

References
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Abstract. In this paper, a new method for solving optimal control
problems governed by nonlinear Volterra integral equations is presented.
For this purpose, the problem is first converted to discrete form. It is
then considered as a quasi assignment problem and an iterative method
is applied to find approximate solution for discretized form of the integral
equation. Then by using evolutionary algorithms, approximate solution
of optimal control problems is obtained.

1. Introduction

Evolutionary algorithms (EAs) as well as optimization are two prominent
fields of research in applied science and engineering. Recently, evolution-
ary and heuristic algorithms have been raised as powerful tools in solving
optimal control problems, [1, 2, 3]. Combination of these approaches and
a usual numerical approach of solving ODE’s with dicretization of control
space leads to efficient numerical scheme for detecting approximate optimal
control and state functions in classical optimal control problems. In this

2010 Mathematics Subject Classification. Primary 49J21; Secondary 45D05, 90C59,
68W40.

Key words and phrases. Optimal control, Volterra integral equation, Evolutionary al-
gorithm, Discretization, Approximation.

∗ Speaker.
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paper, we focus on the formulation of a class of optimal control problems
governed by nonlinear Volterra integral equations as follows

Minimize J(x, u) =

∫ T

0

ζ(t, x(t), u(t))dt, (1.1)

where control function u(.) and corresponding state x(.) are subjected to

x(t) = y(t) +

∫ t

0

κ(t, s, x(s), u(s))ds, a.e. on [0, T ]. (1.2)

Here ζ ∈ C([0, T ]× R× R) and κ, κx(=
∂κ
∂x) ∈ C([0, T ]× [0, T ]× R× R).

2. Discretization of Control Space

In this section we present a control discretization based method by equidis-
tance partition of [0, T ] as △n = {0 = t0, t1, · · · , tn−1, tn = T} with dis-
cretization parameter h = ti+1 − ti, i = 0, 1, · · · , n− 1. The time interval is
divided to n sub-interval [t0 = 0, t1], [t1, t2], · · · , [tn−1, tn = T ]. On the other
hand, the set of control values is divided to constants u1, u2, · · · , um. In this
way, the time-control space is discretized if the control function assumes to
be constant at each time sub-interval. Using the characteristic function

χ[tk−1,tk)(t) =

{
1 t ∈ [tk−1, tk),
0 otherwise,

the control function may be presented as u(t) =
∑N

k=1 ukχ[tk−1,tk](t). Triv-
ially, the corresponding trajectory should be in discretized form. Thus a
discretized form of the problem (1.1)-(1.2) should be considered such that
its solution be converged to the solution of the original problem.

Now, if (x, u) be an admissible pair, then for the partition △n on [0, T ],
we have

x(ti) = y(ti) +

∫ ti

0

k(ti, s, x(s), u(s))ds, i = 0, 1, · · · , n. (2.1)

In (2.1), the term integral can be estimated by a numerical method of in-
tegration, e.g. one of Newton-Cotes methods. Therefore, by taking equidis-
tance partition △n, as above with h = ti+1 − ti, i = 0, 1, · · · , n− 1 and also
the weights wij , j = 0, 1, · · · , i, equality (2.1) can be written as,

xi = yi +
i∑

j=0

wijk(ti, sj , xj , uj) +O(hν), i = 0, 1, · · · , n, (2.2)

where xi = x(ti), yi = y(ti), i = 0, 1, · · · , n, and ν depends upon the used
method of Newton-Cotes for estimating of the integral in (2.1). The same
partition and weights can be used to convert the objective function (1.1) to
the following form

J(x, u) =

n∑
j=0

wjζ(tj , xj , uj) +O(hν). (2.3)

9
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For partition △n, by neglecting the truncation error of (2.2) and (2.3), the
following nonlinear optimization problem may be considered

Minimize J△n =
n∑

j=0

wjζ(tj , ξj , υj), (2.4)

subject to: ξi = yi +

i∑
j=0

wijk(ti, sj , ξj , υj), i = 0, 1, · · · , n, (2.5)

3. Convergence

The solution of nonlinear programming (2.4)-(2.5) approximates the orig-
inal problem by minimizing J(x, u) over the subset Pn of P consist of
all piece-wise linear function x(.) and u(.) with nodes at ξ0, ξ1, · · · ξn and
υ0, υ1, · · · , υn satisfying (2.4). Our first aim is to show that P1 ⊆ P2 ⊆ P3 · · ·
in an embedding fashion.

Lemma 3.1. There exists an embedding that maps Pn to a subset of Pn+1

for all n = 1, 2, · · · .

The above lemma has an important result in decreasing behavior of the
optimal value of the objective function which leads to the following theorem.

Theorem 3.2. If µn = infPn J△n for n = 1, 2, · · · , and µ∗ = infP J(x, u),
then limn→∞ µn = µ∗.

4. Combination Approach

For an successive iterative scheme of solving nonlinear Volterra inte-
gral equations, we apply a successive substitution, similar to Gauss-Seidel
method of solving linear equations systems, and thereby define an iterative
process leading to the sequence of vectors {ξ(k)}, where the components of
the vectors satisfy the iteration formula,

ξ
(k+1)
i = yi +

i∑
j=0

wijκ(ti, sj , ξ
(k)
j , υj), i = 0, 1, · · · , n, k = 0, 1, · · · (4.1)

where we consider a partition △n on the time interval [0, T ] and a dis-
cretization of the control space on basis of this partition.

Proposition 4.1. Suppose,
(i) κ(t, s, ξ(s), υ(s)) ∈ C([0, T ]× [0, T ]× R× R),
(ii) κξ(t, s, ξ(s), υ(s)) exists on [0, T ]× [0, T ]× R× R and γ < 1

T , where

γ = sup
s,t∈[0,T ]

|κξ(t, s, ξ(s), υ(s))|.

Then

∥x∗ − ξ∗∥∞ ≤ |O(hν)|
1− Tγ

(4.2)

where x∗ = (x∗0, x
∗
1, · · · , x∗n)T and ξ∗ = (ξ∗0 , ξ

∗
1 , · · · , ξ∗n)T , are the exact solu-

tions of nonlinear systems (2.2) and (2.5), respectively.
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Corollary 4.2. ∥x∗ − ξ∗∥∞ vanishes when h → 0.

Theorem 4.3. Considering assumptions of Proposition 4.1, the produced
sequence {ξ(k)} from the iteration process (4.1) tends to the exact solution

of (2.5), say ξ∗, for any arbitrary initial vector ξ(0).

Now an evolutionary algorithm, as genetic algorithm, can be applied by
considering the performance index (2.4) for an approximate admissible pair

(ξ, υ). Assuming ξ(k) be the vector which is obtained in the kth iteration, a
stopping criteria may be considered as follows:

∥ξ(k+1) − ξ(k)∥
∥ξ(k)∥

< ϵ, (4.3)

for a prescribed small positive number ϵ that should be chosen according
to the accuracy desired, where ∥ · ∥ is a norm on vectors. We have applied
three evolutionary algorithms, i.e. genetic algorithm (GA), particle swarm
optimization (PSO) and invasive weed optimization (IWO).

Example 4.4. Consider the following optimal control

Minimize

∫ 1

0

(x(t)− t)2 + (u(t)− t2)2dt,

subject to:

x(t) = y(t) +

∫ t

0

x(s)(u(s) + ts)ds,

where, y(t) = t− 7
12 t

4. The results of applying the proposed algorithm with
the number of iterations=100, population size=10, are illustrated in Fig.1,
where the approximate optimal trajectories and controls are compared with
the exact ones, respectively.
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Figure 1. The exact and approximate solutions in Example 4.4.

References

1. A. H. Borzabadi and H. H. Mehne, Ant Colony Optimization for Optimal Control
Problems, J. of Inf. and Comp. Sci. 4 (2009), no. 4, 259–264.

2. A. H. Borzabadi and M. Heidari, Comparison of Some Evolutionary Algorithms for
Approximate Solutions of Optimal Control Problems, Aust. J. of Bas. and Appl. Sci. 4
(2010), no. 8, 3366–3382.

3. O. S. Fard and A. H. Borzabadi, Optimal control problem, quasi-assignment prob-
lem and genetic algorithm, Enformatika, Transaction on Engin. Compu. and Tech. 19
(2007), 422–424.

11



The Extended Abstracts of

The 1st Seminar on Control and Optimization

11-12th October 2017, Ferdowsi University of Mashhad, Iran

A CHEBYSHEV SPECTRAL METHOD TO FIND THE
EXTREMUM OF THE FUNCTIONAL

J [u] =
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2 − 2u] dx dy
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Abstract. In this paper, we present a Chebyshev spectral method
for finding the solution of the variational problem which is stated

as: Minimize J [u] =
∫ 1

−1

∫ 1

−1

[
(ux)

2 + (uy)
2 − 2u

]
dx dy, subject

to the boundary conditions u(x,±1) = u(±1, y) = 0, −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1. The method is based upon constructing the in-
terpolating polynomial for the function u(x, y), using Chebyshev
nodes, to approximate the solution of the variational problem. Us-
ing the Clenshaw integration rule, the functional of the variational
problem is discretized to an algebraic expression. Therefore, the
variational problem is reduced to a nonlinear programming prob-
lem. The numerical results demonstrate the convergence of the
proposed method.

1. Introduction

In this talk, we consider the following variational problem: Find the
function u = u(x, y) that satisfies the boundary conditions

u(x,±1) = u(±1, y) = 0, −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, (1.1)

2010 Mathematics Subject Classification. Primary 49M25; Secondary 65D25,
65N35.

Key words and phrases. Chebyshev, Spectral methods, Variational problems.
∗ Speaker.
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and minimizes the functional

J [u] =

∫ 1

−1

∫ 1

−1

[
(ux)

2 + (uy)
2 − 2u

]
dx dy. (1.2)

Problems in which it is required to determine a function which max-
imizes or minimizes a certain functional are called variational prob-
lems. The numerical methods such as the well-known Ritz and Galerkin
methods have been developed to solve variational problems [1, 2]. The
Ritz and Galerkin methods are direct methods which convert the varia-
tional problem to a mathematical programming problem. For instance,
the method in [4] requires that the performance index and the system
differential equations be expanded around nominal trajectories. There-
fore, the original optimal control problem can be solved by solving a
sequence of linear-quadratic optimal control problems. Then, each of
these obtained problems is converted into a quadratic programming
problem using Chebyshev polynomials to parameterize the state vari-
ables.

The purpose of this talk is to present an alternative approach. Here,
we introduce a Chebyshev spectral method for finding the solution of
the variational problem (1.2) with the boundary conditions defined in
Eq. (1.1). The approach is a spectral method in which we construct
the interpolating polynomial using Chebyshev nodes to approximate
the function u(x, y). The partial derivatives ux(x, y) and uy(x, y) are
approximated by analytic derivatives of the corresponding interpolat-
ing polynomial. The functional (1.2) is discretized using the Clenshaw
integration rule. Therefore, the variational problem is reduced to a
nonlinear programming problem to which existing well-developed algo-
rithms could be applied.

It is well-known that in order for the function u = u(x, y) to be a
solution of the variational problem (1.2), u must be an extremal, i.e.,
a solution of the Euler’s equation [3]. It is readily verified that the
Euler’s equation corresponding to the variational problem (1.2) has
the following form, known as Poisson’s equation:

−(
∂2u

∂x2
+

∂2u

∂y2
) = 1. (1.3)

Therefore, by applying the present method to approximate the solution
of the variational problem stated in this talk, we obtain an approxi-
mate solution to the Poisson’s equation (1.3) subject to the boundary
conditions defined in Eq. (1.1).

13
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2. Proposed Method

In this approach, we expand the function u(x, y) of two variables x
and y, in terms of Lagrange polynomials of degree m, as

um(x, y) =
m∑
i=0

m∑
j=0

uij Li(x) Lj(y), (2.1)

where U = [uij] is the (m + 1) × (m + 1) matrix of unknown coeffi-
cients uij = u(xi, yj), i, j = 0, 1, . . . ,m. Here, we let {x0, x1, . . . , xm} =
{y0, y1, . . . , ym} be the set of Chebyshev nodes defined by xj = cos(πj

m
),

j = 0, 1, . . . ,m and suppose Li(x) and Lj(y) are the Lagrange polyno-
mials of degree m corresponding to xi and yj, respectively.

Now, by substituting u(x, y) by um(x, y) in the functional (1.2) and
using the Clenshaw-Curtis quadrature formula, we obtain the following
discretization of the functional (1.2):

Jm[um]

=
m∑
i=0

m∑
j=0

wiwj{(
∂um

∂x
(xi, yj))

2 + (
∂um

∂y
(xi, yj))

2 − 2uij}, (2.2)

where wj, j = 0, 1, . . . ,m, are the weights of the Clenshaw-Curtis quad-
rature formula. In order to compute the value of ∂um

∂x
at the node

(x, y) = (xi, yj), we firstly differentiate the interpolating polynomial
um(x, y) with respect to x and then we set (x, y) = (xi, yj). By this
approach, we obtain

∂um

∂x
(xi, yj) =

m∑
k=0

dikukj,

where D = [dij] is the Chebyshev differentiation matrix [5]. Similarly,
by differentiating the interpolating polynomial um(x, y) with respect to
y, the value of ∂um

∂y
at the node (xi, yj) is obtained by the summation

∂um

∂y
(xi, yj) =

m∑
k=0

djkuik.

Therefore, by applying the proposed method, the variational problem
(1.2) with the boundary conditions defined in Eq. (1.1) is reduced
to a parameter optimization problem which can be stated as follows:
Find U = [uij], the (m + 1) × (m + 1) matrix of unknown coefficients
uij = u(xi, yj), i, j = 0, 1, . . . ,m, that minimizes the expression given
in Eq. (2.2). Note that, using the boundary conditions defined in Eq.
(1.1), u0j = umj = ui0 = uim = 0, i = 0, 1, . . . ,m, j = 0, 1, . . . ,m,
are given. By solving the obtained nonlinear programming problem for

14
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the unknowns uij, i, j = 0, 1, . . . ,m, the approximate solution of the
variational problem (1.2) with the boundary conditions defined in Eq.
(1.1) is obtained using Eq. (2.1).

3. The numerical results

In Table 1, we reported the values of the maximum absolute error
E = {|u(x, y)− u∗(x, y)|, −1 ≤ x, y ≤ 1}, where u(x, y) and u∗(x, y)
denote the approximate solution obtained by the proposed method
and the exact solution, respectively. In this table, we also listed the
approximate values of J [u] which are obtained by applying the pro-
posed method. Note that the extremum value of the functional J [u] is
J [u∗] = −0.562308.

Table 1. Computational results for the maximum ab-
solute error E and approximate values of J [u].

J [u] E
m = 3 −0.592592 3.9× 10−2

m = 5 −0.563424 3.1× 10−3

m = 7 −0.562371 7.5× 10−4

m = 9 −0.562316 2.7× 10−4

m = 11 −0.562310 9.7× 10−5

m = 13 −0.562308 3.6× 10−5
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Abstract. In this paper, a numerical method is applied for solv-
ing delay fractional optimal control problems (DFOCPs). At the
first step, using Padé approximation, the delay problem is trans-
formed to a non-delay problem. Next, using the operational matrix
of the fractional derivative of Müntz polynomials and pseudospec-
tral (PS) method, fractional optimal control problem (FOCP) is
reduced into a nonlinear programming problem. A numerical ex-
ample is given to illustrate the effectiveness of the proposed scheme.

1. Introduction

In this paper, we are interested in delay fractional optimal control
problem

J =

∫ 1

0

G(t, x(t), x(t− σ), u(t), u(t− τ))dt, (1.1)

2010 Mathematics Subject Classification. Primary 47A55; Secondary 39B52,
34K20, 39B82.

Key words and phrases. Delay fractional optimal control problem, Operational
matrix, Müntz polynomials, Pseudospectral method, Padé approximation, Nonlin-
ear programming.

∗ Speaker.
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subject to CDαx(t) = F (t, x(t), x(t− σ), u(t), u(t− τ)), t ∈ [0, 1],
(1.2)

g(t, x(t), u(t)) ⩽ 0, t ∈ [0, 1], (1.3)

x(t) = ϕ(t), t ∈ [−σ, 0], (1.4)

u(t) = ψ(t), t ∈ [−τ, 0], (1.5)

where CDα is Caputo fractional derivative which is defined as follows

C
0D

α
t f(t) =

1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ, α ∈ (n− 1, n), n ∈ N.

(1.6)

2. Transformation of delay to non-delay problems

2.1. Padé approimantion for DFOCPs. Two-sided Laplace trans-
form of f(t) is defined as follows [3]

B(f(t)) = F (s) ≜
∫ ∞

−∞
e−stx(t)dt,

To remove variables with a time-delayed argument in (1.1)-(1.2), we
first define y(t) ≜ x(t− σ) and B(y(t)) = Y (s). The two-sided Laplace
transforms Y (s) and X(s) are then related by (see [3])

Y (s) = e−sσX(s). (2.1)

Using the first-order Padé approximation, equation (2.1) is approxi-
mated by {

Y (s) =
2
σ
−s

2
σ
+s
X(s),

( 2
σ
+ s)Y (s) = ( 2

σ
− s)X(s).

(2.2)

If we now perform an inverse two-side Laplace transformation on the
last equation (2.2), we have

ẏ(t) =
2

σ
(x(t)− y(t))− ẋ(t).

We can obtain similar relations for delay in control. The time-delayed
problem (1.1)-(1.5) is thus transformed to non-delayed problem that
can be solved by many algorithms for the FOCPs.

3. Numerical treatment of the FOCP

In this section, we propose a numerical scheme based on PS method
to solve the FOCP.
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3.1. Müntz–Legendre polynomials. The MLPs on the interval [0, 1]
are represented by the formula

Ln,α(t) =
n∑

k=0

Cn,kt
kα, Cn,k =

(−1)n+k

αnk!(n− k)!

n−1∏
v=0

((k + v)α + 1). (3.1)

3.2. Approximation of FOCP. In our approach, first we obtain
operational matrix of fractional derivative for MLPs. Then we use
the quadrature rule to approximate the integral involved in the cost
function. In the discretization of the FDE, we will use the shifted
Legendre-Gauss nodes (i.e. roots of PN+1(t) = 0). We now turn
to define shifted Legendre-Gauss nodes and corresponding quadrature
weights. We denote by xk, k = 0, 1, 2, · · · , N, the standard Legendre-
Gauss nodes on the interval (−1, 1), which are the zeros of LN+1(x).
The shifted Legendre-Gauss nodes on the interval [0, 1] denoted by
ηk, k = 0, · · · , N. Clearly, ηk = xk

2
+ 1

2
. The corresponding quadrature

weights are ŵk =
wk

2
.

We now assume that, the solutions of the final problem can be approx-
imated by the MLPs as

x(t) ≈ xN(t) = X TL(t) =
∑N

i=0XiLi,α(t),

y(t) ≈ yN(t) = YTL(t) =
∑N

i=0 YiLi,α(t),

u(t) ≈ uN(t) = UTL(t) =
∑N

i=0 UiLi,α(t),

v(t) ≈ vN(t) = VTL(t) =
∑N

i=0 ViLi,α(t),

(3.2)

where Xi, Yi, Ui, Vi, i = 0, 1, 2, · · · , N, are the unknown MLPs coeffi-
cients to be determined and Li,α(t)s are MLPs of order α. Thus, con-
sidering the above equations at ShLG collocation points, the obtained
FOCP will be transform to a NLP in a structured form. Since the
gradient of the objective function is available we use sequential qua-
dratic programming (SQP). We implement this method using Maple
18 software.

4. Numerical example

Example 4.1. Consider the following DFOCP

minimize J =
1

2

∫ 2

0

(x2(t) + u2(t))dt, (4.1)

subject to C
0D

α
t x(t) = x(t− 1) + u(t), (4.2)

x(t) = 1, t ∈ [−1, 0]. (4.3)

This problem is solved using the suggested method. The values of
the cost functional J for α = 1, 0.9, 0.8 and N = 20 are reported in
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Figure 1. Approximate solutions of x(.) and u(.) for
α = 1, 0.9, 0.8 and N = 20

Table 1. The state and control functions for N = 20 are also shown in
Figure 1.

Table 1. Approximate values of cost function J in Ex-
ample 5.1.

Method Value of α Value of J
The presented method α = 1 1.647453
N = 20 α = 0.9 1.657988

α = 0.8 1.668994
Walsh functions [2] α = 1 1.6497
N = 100
Hybrid function [1] α = 1 1.647874
N = 3,M = 6
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Abstract. In this paper, the Chebyshev pseudo-spectral method
is applied for solving optimal control of Burgers equation. In this
method, an interpolating polynomial is utilized to approximate
the optimal solution which satisfies some optimality conditions.
We show that the proposed method has high accuracy and high
convergence rate.

1. Introduction

Optimal control of viscous Burgers equation is one of the most im-
portant PDEs constraint optimization which is taken into consideration
and several papers have been presented in its numerical solution.
In this paper, we apply an indirect chebyshev pseudo-spectral (CPS)
method for solving optimal control of Burgers equation. Here, we uti-
lize the CPS method to solve the optimality equations. By numerical
example, we see that the CPS method is more effective than method
given by sabeh et al.[1] and we can achive the better results for the
solution of optimal control problem of Burgers equation.
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spectral method, Chebyshev-Gauss-Lobatto nodes.
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2. Optimal control problem of Burgers equation

The distributed optimal control problem for the Burgers equation
can be stated as follows

Minimize J [y, u] =
1

2

∫ T

0

∫ 1

0

(y(t, x)− z(t, x))2dxdt+
α

2

∫ T

0

∫ 1

0

u2(t, x)dxdt (2.1)

s.t


yt(t, x) + y(t, x)yx(t, x)− νyxx(t, x) = Φ(u), (t, x) ∈ Q = [0, T ]× [0, 1]

y(t, 0) = y(t, 1) = 0, t ∈ Σ = [0, T ]

y(0, x) = y0(x), x ∈ Ω = [0, 1]

(2.2)

where y(., .) is the state variable, u(., .) is the control variable, α > 0
is the regularization parameter, ν > 0 denotes the viscosity parameter
and Φ is a given function.

At the first, optimality conditions for problem (2.1)-(2.2) are given,
then we indirectly develop the CPS method to achieve an approximate
optimal solution.

The first-order optimality conditions for the problem (2.1)-(2.2) are
given as follows (see [2, 3])



yt − νyxx + yyx = Φ(u), (t, x) ∈ Q,

pt + νpxx + ypx = yd − y, (t, x) ∈ Q,

y(t, 0) = y(t, 1) = 0, t ∈ Σ,

y(0, x) = y0, x ∈ Ω,

p(t, 0) = p(t, 1) = 0, t ∈ Σ,

p(T, x) = 0, x ∈ Ω,

αu+ p = 0, (t, x) ∈ Q.

(2.3)

From the last equation of system (2.3), we have

u = − 1

α
p. (2.4)

Now, we utilize the CPS method to solve optimality conditions (2.3)
and obtain an approximate optimal solution for the optimal control
problem (2.1)-(2.2).

To use the CPS method the variables of system (2.3) must be trans-
formed to interval [−1, 1] by the following linear transformations

t =
T

2
t̄+

T

2
x =

1

2
x̄+

1

2
; x ∈ [0, 1], t ∈ [0, T ], x̄, t̄ ∈ [−1, 1]. (2.5)
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By (2.4) and (2.5), the optimality conditions (2.3) can be written as
follows 

2
T
Yt̄ − 4νYx̄x̄ + 2Y Yx̄ = Φ(− 1

α
P ), in [−1, 1]× [−1, 1],

2
T
Pt̄ + 4νPx̄x̄ + 2Y Px̄ = Yd − Y, in [−1, 1]× [−1, 1],

Y (t̄, 0) = Y (t̄, 1) = 0, in [−1, 1],

P (t̄, 0) = P (t̄, 1) = 0, in [−1, 1],

Y (0, x̄) = Y0(x̄), in [−1, 1],

P (T, x̄) = 0, in [−1, 1].

(2.6)

Now, to approximate the optimal solution, we utilize the following
polynomial interpolations{

Y N (t̄, x̄) =
∑N

i=0

∑N
j=0 āijLi(t̄)Lj(x̄),

PN (t̄, x̄) =
∑N

i=0

∑N
j=0 b̄ijLi(t̄)Lj(x̄)

(2.7)

To express the derivatives we can use the matrix multiplicationD where

Dkj = L′
j(t̄k) =



µk

µj
(−1)k+j 1

t̄k − t̄j
, if j ̸= k,

− t̄k
2− 2t̄2k

, if 0 ≤ j = k ≤ N − 1,

−2N2 + 1

6
, if j = k = 0,

2N2 + 1

6
, if j = k = N.

(2.8)

Now, by relations (2.7) and (2.8), conditions (2.6) can be written as
the following discrete form

2
T

∑N
i=0 āikDpi − 4 ν

∑N
i=0

∑N
j=0 āpiDjiDkj + 2 āpk

∑N
j=0 āpjDkj = Φ(− 1

α
b̄pk),

2
T

∑N
i=0 b̄ikDpi + 4 ν

∑N
i=0

∑N
j=0 b̄piDjiDkj + 2 āpk

∑N
j=0 b̄pjDkj = Yd(t̄p, x̄k)− āpk,

āp0 = āpN = 0, b̄p0 = b̄pN = 0, ā0k = Y0(x̄k), b̄Nk = 0, k, p = 0, 1, . . . , N.

(2.9)

By solving system(2.9), we can obtain approximate optimal solutions.
Also, by (2.4) the approximate optimal control and optimal value of
objective function can be given as

U(t̄, x̄) =
−1

α

N∑
i=0

N∑
j=0

b̄ijLi(t̄), Lj(x̄)

J(y, u) =
T

8

N∑
k=0

N∑
p=0

wkwp[(apk − z(tp, xk))
2 + αc2pk],

(2.10)

where, cpk = − 1
α
bpk and ws, s = 0, 1, ..., N are the quadrature weights

of the integral approximation (2.10).

Example 2.1. Consider problems (2.1)-(2.2), where T = 1, α = 1, ν =
0.01, 0.05, y0 = sin(4πx), Φ(u) = u and z(t, x) = 0. The approximate
optimal value of objective function computed by the CPS method for
ν = 0.01, 0.05 and N = 10, 20, 30 and 40 are shown in Table 1. We
observe that our numerical results are better than the results of LPS
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method [1]. In Figure 2, we show the obtained approximate optimal
state and control for ν = 0.05 and N = 40.

Table 1. Comparison of objective function values for Example 2.1.

ν = 0.01 ν = 0.01 ν = 0.05 ν = 0.05
N Presented method LPS method[1] Presented method LPS method[1]
10 0.033014881174862 0.0828638100277 0.016911085761598 0.01590006952876
20 0.040440356851832 0.0620867108909 0.013730446517693 0.01519309308076
30 0.029728232559725 0.0466282421253 0.015082505388501 0.01519227846689
40 0.029005091596013 0.0463124455511 0.015073940981453 0.01519176630695
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Figure 2(a) The approximate optimal Figure 2(b) The approximate optimal

state forN = 40 and ν = 0.05 control forN = 40 and ν = 0.05

3. Conclusion

The optimal control of Burgers equation is known as a complex prob-
lem in control theory. In this work, by applying CPS method for op-
timal control of Burgers equation, we achieved a good approximate
optimal solution with good accuracy.
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Abstract. In this paper, first an interior point algorithm based
on a new class of kernel functions obtained by imposing some mild
conditions on the kernel function is given. This class is fairly gen-
eral and includes the SR functions, non-SR functions, the classical
logarithmic functions, as well as trigonometric functions. Then, we
compute the worst case iteration complexity bounds for the new
generic kernel function. Finally, we define three new kernel func-
tions that are not presented so far the literature and show that the
primal-dual IPM based on these functions enjoys the best known
complexity bound for large-update methods.

1. Introduction

We consider the standard form of Linear Optimization (LO) problem
as:

(P ) min{cTx : Ax = b, x ≥ 0},
and hence, the dual problem of (P ) is given by:

(D) max{bTy : ATy + s = c, s ≥ 0},

2010 Mathematics Subject Classification. 90C51; 90C05,90C25, 49M15.
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kernel function, complexity bounds.
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where A ∈ Rm×n, x, c, s ∈ Rn and y, b ∈ Rm. Here, we consider the
following assumptions.

A1 (Interior Point Condition (IPC)): There exist a strictly feasible
points for (P) and (D), namely, x0 > 0 and (y0, s0) with s0 > 0,
so that: Ax0 = b and ATy0 + s0 = c.

A2 : The matrix A has full row rank, that is rank(A) = m ≤ n.

Due to the Karush-Kuhn-Tucker (KKT) conditions, finding an optimal
solution for the problems (P) and (D) is equivalent with solving the
following nonlinear system:

Ax = b, ATy + s = c, xs = 0, (x, s) ≥ 0. (1.1)

The basic idea of primal-dual Interior Point Methods (IPMs) for LO
problems is to replace the equation sx = 0 in (1.1), by the parame-
terized equation xs = µe, where µ is a real positive parameter and
e = (1, 1, . . . , 1)T . Therefore, the new system is given by:

Ax = b, ATy + s = c, xs = µe, (x, s) ≥ 0. (1.2)

Due to A1 and A2, this new system has a unique solution [1]. A
direct application of the Newton method on (1.2) provides the following
system for ∆x, ∆y and ∆s:

A∆x = 0, AT∆y +∆s = 0, x∆s+ s∆x = µe− xs. (1.3)

For simplicity, let us define the scaled vector v and new search direc-

tions dx and ds as v :=
√

xs
µ
, dx = v∆x

x
and ds =

v∆s
s
.

Therefore, the system (1.3) is converted to the following one:

Ādx = 0, ĀT∆y + ds = 0; dx + ds = v−1 − v, (1.4)

where Ā := 1
µ
AV −1X, V := diag(v), X := diag(x) and S := diag(s)

One can easily see that v − v−1 equals to the minus gradient of the
following proximity function [4]: Ψc(v) :=

∑n
i=1 ψc(vi), vi ∈ R++,

where ψc(t) =
t2−1
2

− log(t), is so-called kernel function of the proximity
function. We can convert the system (1.4) to the following system:

Ādx = 0, ĀT∆y + ds = 0, dx + ds = −∇Ψ(v), (1.5)

where, Ψ(v) =
∑n

i=1 ψ(vi) is a proximity function.
Recently, several interior point methods based on the kernel function
have been constructed. An important work in this direction goes back
to work proposed by Bai et al. [1]. Moreover, we can find interesting
works with interior point methods based on the trigonometric kernel
function in [2, 3, 4]
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2. Complexity results

Let us define the new class of functions as:

ψ(t) =
t2 − 1

2
−

∫ t

1

exp(f(x))dx, (2.1)

where f(x) is a twice differentiable on (0,∞) that satisfies the following
conditions:

f(1) = 0, lim
t7→0+

f(t) = +∞, tf ′(t) + 1 < 2t exp(−f(t)), (2.2)

f ′(t) < 0 and f ′′(t) > 0, ∀ t > 0. (2.3)

By using (2.1) and (2.2), we have: limt→+∞ ψ(t) = limt→+0+ ψ(t) =
+∞, which means that the function ψ(t) has barrier property [1].

Lemma 2.1. Let t > 0; thus, for the function ψ(t) defined by (2.1),
we have: 1) ψ′′′(t) < 0, 2) tψ′′(t) + ψ′(t) > 0, 3) ψ′′(t) > 1.

Now, we define the norm-based proximity measure δ(v) as follows:

δ(v) :=
1

2
∥∇Ψ(v)∥ =

1

2

√√√√ n∑
i=1

(ψ′(vi))2, v ∈ Rn
++. (2.4)

In the following, we present a technical lemma, which is useful to com-
pute an upper bound for the proximity function.

Lemma 2.2 (Lemma 2.2 in [3]). For the new kernel function ψ(t)
defined by (2.1), we have:

1) Ψ(v) ≤ 2δ(v)2, 2) ∥v∥ ≤
√
n+

√
2Ψ(v) ≤

√
n+ 2δ(v).

An upper bound for total number of iterations is given by the fol-
lowing theorem.

Theorem 2.3. Assume that τ = O(n) ≥ 1; therefore, the total number
of iterations to get an ϵ solution (i.e., a solution that satisfies xT s =

nµ ≤ ϵ) is given by
⌈
nγ

κγ

⌉ ⌈
1
θ
log n

ϵ

⌉
, where κ > 0 and 0 < γ ≤ 1.

Proof. The proof is similar to the proof of Theorem 6.1 in [4]. There-
fore, we omit it here. □

3. Three New kernel functions

In this section we give three new kernel functions which are not
presented so far in literatures. To start, we define three function fi(t)’s,
which satisfy the conditions (2.2)–(2.3). The functions fi(t) and new
kernel functions are defined in Table 1.
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Table 1. Three new kernel functions

i fi(x) ψi(t)

1 p( e−1
ex−1

− 1) t2−1
2

−
∫ t

1
ep(

e−1
ex−1

−1)dx

2 p log( e−1
ex−1

) + p( e−1
ex−1

− 1) t2−1
2

−
∫ t

1
( e−1
ex−1

)pep(
e−1
ex−1

−1)dx

3 −2p log(x) + p(tan(h(x))− 1) t2−1
2

−
∫ t

1
1

x2p e
p(tan(h(x))−1)dx

In Table 1, the function h(t) is defined as h(t) := π
2+2t

. By using
information presented in the previous section, we conclude that the
new kernel functions have the best known iteration complexity bounds,
i.e., O(

√
n log n log n

ϵ
). We perform interior point algorithm based with

new kernel functions on the a test problem in [2]. The obtained results
are presented in Table 2.

Table 2. The numerical results of performing interior
point Algorithm for m = 1000.

θ 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5

ψ1 Iter 34 31 29 30 30 31 25 26
Time 154.78 79.98 56.18 45.00 37.01 31.09 27.86 26.23

ψ2 Iter 35 29 28 28 27 26 24 26
Time 231.12 79.81 51.79 39.67 32.79 26.74 20.74 17.01

ψ3 Iter 26 24 29 22 22 20 21 18
Time 163.75 85.92 43.59 45.17 38.10 32.95 26.75 21.60
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Abstract. This paper presents an approximate method for solv-
ing a class of optimal control problems (OCP) of Volterra integral
equations. The method is based on using the second Chebyshev
wavelet (SCW) functions. We give the SCW operational matrix,
and combine it with the block pulse functions (BPFs) to derive
the procedure of solving this kind of OCPs. In this method, we
do not need any projection method and any integrations to obtain
the coefficient of SCW expansion.

1. Introduction

Many problems in economics, biology, epidemiology, and memory ef-
fects can be modelled as a Volterra optimal control problem (VOCP)
which are solvable by dynamic programming methods. There are dif-
ferent technique for solving the optimal control problem governed by
Volterra integral equations. Of all of them, orthogonal functions have
received considerable attention dealing with various OCPs. For exam-
ple, [1] has been presented a TFs method for solving VOCPs. Or the
necessary and sufficient conditions on the existence solution of VOCPs
have been considered in [2].

2010 Mathematics Subject Classification. Primary 47A55; Secondary 39B52,
34K20, 39B82.

Key words and phrases. Volterra optimal control problem, Second Chebyshev
Wavelet, Operational matrix.

∗ Speaker.
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In this paper, we propose a new method to solve numerically the
following OCP by SCW

Min J = F0(x(tf )) +

∫ tf

0

F (t, x(t), u(t))dt

s.t.{
x(t) = g(t) +

∫ t

0
K(t, s, x(s), u(s))ds,

x(0) = x0,

(1.1)

where x ∈ Rn, is the state vector and the vector function u ∈ Rm is
the control function.

2. SCW and its properties

2.1. Construction of SCW. The second Chebyshev wavelets, de-
fined on the interval [0, 1), have the following form [3, 4],

ψn,m(t) =

{
2

k
2 Ũ(2kt− 2n+ 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, otherwise,
(2.1)

where n = 1, · · · , 2k−1, k is any positive integer, and Ũm(t) =
√

2
π
Um(t),

that Um(t) is the second Chebyshev polynomial of degree m which re-
spect to the weight function w(t) =

√
1− t2. They are defined on

[−1, 1] by the recurrence:

U0(t) = 1, U1(t) = 2t, Um+1(t) = 2tUm(t)− Um−1(t), m = 1, 2, · · · .
The weight function ω̃(t) = ω(2t− 1) has to be dilated and translated
as ωn(t) = ω(2kt− 2n+ 1).

2.2. Function approximation. A function f(t) defined over [0, 1),
may be expressed in terms of the SCW as

f(t) ≃
2k−1∑
n=1

M−1∑
m=0

cnmψnm(t) = CTΨ(t),

where the coefficient vector C and SCW function vector Ψ are given
by:

C = [c10, · · · , c1M−1), c20, · · · , c2M−1), · · · , c2k−10, · · · , c2k−1M−1)]
T ,

Ψ(t) = [ψ10, · · · , ψ1M−1), ψ20, · · · , ψ2M−1), · · · , ψ2k−10, · · · , ψ2k−1M−1)]
T .

Taking the collocation points as ti = 2i−1
2kM

, i = 1, 2, · · · , 2k−1M , we
define the SCW matrix

Φm′×m′ = [Ψ(
1

2m′ ),Ψ(
3

2m′ ), · · · ,Ψ(
2m′ − 1

2m′ )],
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where m′ = 2k−1M . Next, we define a m-set of block pulse functions
(BPFs) as

bi(t) =

{
1, i−1

m
≤ t < (i)

m
,

0, otherwise,
(2.2)

where i = 1, 2, · · · ,m. The SCW may be expanded into an m-term
BPFs as

Ψm(t) = Φm×mBm(t), (2.3)

where Bm(t) := [b1(t), b2(t), · · · , bm(t)]T .

Lemma 2.1. Let Ψm′(t) be a m′-vector function of the SCW then∫ 1

0

ΨT (t)Ψ(t)dt =
1

m′ trac(Φ
T
m′×m′Φm′×m′).

where for any m′ ×m′ matrix A, trac(A) :=
∑m

i=1 aii.

Proof: From Eq. (2.3), we can write∫ 1

0

ΨT
m′(t)Ψm′(t)dt =

∫ 1

0

(Φm′×m′Bm′(t))T (Φm′×m′Bm′(t))dt

=

∫ 1

0

BT
m′(t)ΦT

m′×m′Φm′×m′Bm′(t)dt.

Put A := ΦT
m′×m′Φm′×m′ . If ai shows every column of the matrix A,

then∫ 1

0

ΨT
m′(t)Ψm′(t)dt =

∫ 1

0

BT
m′(t)[a1, a2, · · · , am′ ]Bm′(t)dt

=

∫ 1

0

[BT
m′(t)a1, B

T
m′(t)a2, · · · , BT

m′(t)am′ ]Bm′(t)dt

=

∫ 1

0

(
m∑
i=1

bi(t)B
T
m′(t)ai)dt

=

∫ 1

0

(
m∑
i=1

[0, 0, · · · , bi(t), 0, · · · , 0]ai)dt

=

∫ 1

0

(
m∑
i=1

aiibi(t))dt

=
1

m′

m∑
i=1

aii.
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3. Approximation method

By expanding the function x(t) and u(t) in terms of the SCW in Eq.
(1.1), the Volterra integral equation constraint is converted into the
following equation

Θ(X,U) = XTΨ(t)−XT
0 Ψ(t)−

∫ t

0

K(t, s,XTΨ(s), UTψ(s))ds = 0.

We also have the objective function as:

J(X,U) = F0(X
TΨ(tf )) +

∫ tf

0

F (t,XTΨ(t), UTΨ(t))ds.

The optimal control problem is to find X and U such that J(X,U) is
minimized subject to the constraint Θ(X,U) = 0. We construct the
following Lagrange function as follows:

J∗(X,U) = J(X,U) + λΘ(X,U),

where λ is a 2k−1M -vector and denotes the Lagrange multiplier. The
necessary conditions for minimizing J∗ are given by:

∂J∗

∂X
= 0,

∂J∗

∂U
= 0,

∂J∗

∂λ
= 0.

(3.1)

After solving the above nonlinear system in terms of the unknown
coefficients of the vectors X, U and λ, the state function xm′(t) and
the optimal control um′(t) will be obtained.
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Abstract. The objective of this paper is to present a novel method
to design a suboptimal controller for a wide class of nonlinear op-
timal control problems. The proposed method is a combination
of a Legendre pseudospectral successive approximation method
(PSAM) and Newton method, for solving the extreme conditions
derived by Ponteryagin’s maximum principle (PMP). An illustra-
tive numerical example is included to demonstrate the accuracy,
efficiency and the reliability of the proposed method.

1. Introduction

In the control theory, a major importance is conferred to optimal
control problems. This interest is justified by the great number of
practical applications in physics, economy, aerospace, chemical engi-
neering, robotic, etc. For the general optimal control problem (OCP),
however, an analytical solution does not exist. This has inspired re-
searchers to propose approaches to obtain an approximate solution for
it. It is well-known that the OCP leads to a TPBVP obtained from the
PMP. Many recent approaches have been devoted to solve this problem.
Recently, a growing interest has been appeared toward the application
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cessive approximation method, Newton method, Ponteryagin’s maximum principle.
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of approximate analytical techniques in solving this TPBVP. In [1],[2],
the authors give an analytical approximate solution for linear and non-
linear quadratic OCP’s using the homotopy perturbation and analysis
methods (HPM and HAM). Also, in [3], the basic and a modified VIM
are successfully applied to the TPBVP, obtained from nonlinear qua-
dratic OCP’s. In this paper, a novel Newton SAM is proposed. We
first derive the TPBVP from the PMP and then apply a novel Newton
SAM to solve it. This method is applicable for a large class of linear
and nonlinear OCP’s. The simplicity and the efficiency of the proposed
Newton SAM is demonstrated through an illustrative example.

2. Statement of the OCP and optimality conditions

Consider the following optimal control problem:

J [x, u] = 1
2

∫ tF
0

(Q(x(t)) + uT (t)Ru(t))dt
ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), t ∈ [0, tF ]
x(0) = x0.

(2.1)

where x(t) ∈ Rn and u(t) ∈ Rm are denoting the state variable and
control variables, and x0 the given initial state at t = 0. Q(x(t)) a
positive semi-definite real function and R ∈ Rm×m a positive definite
matrix. Our aim is to minimize the objective functional The known
extreme necessary conditions are:

ẋ = f(t, x) + g(t, x)[−R−1gT (t, x)λ]

λ̇ = −
(

1
2
∇Q(x) + (∂f(t,x)

∂x
)Tλ+

∑n
i=1 λi[−R−1gT (t, x)λ]T ∂gi(t,x)

∂x

)
x(0) = x0, λ(tF ) = 0.

(2.2)
where λ(t) ∈ Rm is the co-state vector and the optimal control law
is obtained by u∗ = −R−1gT (t, x)λ. For convenience, let X(t) =
[X1, ..., Xn+m] := [x(t);λ(t)] and define the right hand sides of (2.2)
as,

Ψ(t, x, λ) :=

[
f(t, x) + g(t, x)[−R−1gT (t, x)λ]

−
(

1
2
∇Q(x) + (∂f(t,x)

∂x
)Tλ+

∑n
i=1 λi[−R−1gT (t, x)λ]T ∂gi(t,x)

∂x

)]
(2.3)

Thus the TPBVP in (2.2) can be rewritten in the operator form as:

Fr[X(t)] := Lr[X(t)] +Nr[X(t)] = 0, r = 1, 2, ..., n+m,
X1:n(0) = x0, Xn+1:n+m(tF ) = 0,

(2.4)

where Lr and Nr are linear and nonlinear operators.

33



AN ITERATIVE NEWTON PSEUDOSPECTRAL METHOD FOR SOLVING A CLASS OF OCPS

3. A Novel Pseudospectral Newton SAM

In this section, we propose a novel SAM to solve the TPBVP in
(2.4). Construct a sequence of solutions for solving (2.4), as follows:

Lr[Xk+1(t)] = −Nr[Xk(t)], r = 1, 2, ..., n+m, (3.1)

F ′
r[Xk+1(t)] (Xk+2(t)−Xk+1(t)) = Fr[Xk+1(t)], (3.2)

for which k ≥ 0, the first n entries of Xk+1(t) at t = 0 are x0 and its
last n entries at t = tF are 0.

Let Li(t) be the shifted Legendre polynomials for t ∈ [0, tF ] and tNj ,
0 ≤ j ≤ N , be the Legendre-Gauss-Lobatto (LGL) points. Suppose
Xr,k(t) ∈ R be the rth component of the unknown vector function
Xk(t). Then Xr,k(t) can be approximated by means of the Legendre

basis polynomials up to order N , Xr,k(t) ≈ XN
r,k(t) =

N∑
j=0

Lj(t)X
N,j
r,k ,

where XN,j
r,k is the unknown coefficient of the Legendre polynomial of

degree j, Lj(t). To approximate the derivatives of the unknown func-
tion Xr,k(t) at the collocation points, we use the Legendre spectral
differentiation matrix D as the matrix vector product

Ẋr,k(t
N) ≈ ẊN

r,k(t
N) = DYN

r,k, (3.3)

where tN = [tN0 , t
N
1 , ..., t

N
N ]

T , and YN
r,k = [XN,0

r,k , XN,1
r,k , . . . , XN,N

r,k ]T is the
vector of function Xr,k(t) values at the collocation points and D =
2D/tF where D is an (N + 1) × (N + 1) matrix whose entries are
defined as in [4]. Now, we substitute the approximate solution, XN

r,k(t),
into (3.1)-(3.2) and require that it satisfy the equations at the LGL
nodes. This requirement generates the following pseudospectral SAM
(PSAM):

AWN
k+1 = −N[WN

k ], k ≥ 0, (3.4)

F′N
k+1(W

N
k+2 −WN

k+1) = −FN
k+1, (3.5)

WN
k+1,1:n(t

N
0 ) = x0, WN

k+1,n+1:n+m(t
N
N) = 0, (3.6)

where N[WN
k ] is an (N + 1)(n + m) column vector whose Nr[W

N
k ]

corresponds to Nr[Xr,k(t)] when evaluated at the collocation points for
any r = 1, 2, . . . , N . The matrix A is an ((N + 1)(n + m))2 square
block matrix which is derived from transforming the linear operators
Lr,r = 1, . . . , n + m, at LGL collocation nodes, using the derivative
matrix D and defined as A = (Ar,i),

Ar,i =

{
D+ pr,i(t

N)T I, r = i,
pr,i(t

N)T I, r ̸= i,
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Table 1. The maximum error of PSAM for x1(t) with
N = 20, compared to VIM [3] and HAM [2].

k CPU time Max error CPU time Max error CPU time Max error
(sec.) NSAM (sec.) VIM (sec.) HAM

2 0.018822 4.8041e-04 0.047 5.1463e-1 0.34972 6.5807e-2
3 0.023131 6.2656e-05 0.094 1.7670e-1 1.19685 6.0841e-2
4 0.040204 6.2633e-05 0.109 1.3528e-1 3.05910 5.2627e-2

where I is an identity matrix of order N + 1. Also, F and F′ can be
defined in a similar manner.

4. Illustrative example

Consider the two-dimensional nonlinear composite system described
by

ẋ1 = x1 − x3
1 + x2

2 + u1

ẋ2 = −x2 + x2(x1 + x2
2) + u2

x1(0) = 0, x2(0) = 0.8.

The quadratic cost functional to be minimized is given by:

J =
1

2

∫ 1

0

(x2
1 + x2

2 + u2
1 + u2

2)dt.
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Abstract. This paper is concerned with the design of sliding
mode control (SMC) for a class of stochastic systems with Mar-
kovian jump systems (MJSs). It is assumed that the transmitted
information may be lost, and the probability distribution of packet
dropout obeys Bernoulli process. It is shown that SMC function
can be driven on to the specified sliding surfaces for each mode
in finite time and system is stable. In addition, we simulate and
solve the problem with MATLAB. Finally, a numerical example is
given.

1. Introduction

Sliding mode control (SMC), as an effective robust control strategy,
has been successfully applied to a wide variety of engineering, includ-
ing uncertain systems, stochastic systems and Markovian jump systems
(MJSs) . This paper will be concerned with the design of SMC for a
class of stochastic systems with MJSs. It is assumed that the trans-
mitted information may be lost, and the probability distribution of
packet dropout obeys Bernoulli process [2]. In this paper Firstly, a
sliding-mode surface is constructed, Secondly an estimation method is
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proposed to cope with the packet losses, based on sliding surface is
chosen, and a dropout-probability dependent SMC law is designed. Fi-
nally we simulate and solve it problem with MATLAB and a numerical
example is given.
Notation : In this paper, ∥.∥ denotes the Euclidean norm. For a

real matrix, M > 0 means that M is symmetric and positive definite,
and I is identity matrix. The symbol ′∗′ denotes a term that is in-
duced by symmetry. (Ω, F, P ) is a probability space with Ω the sample
space, and F the σ-algebra of subsets of the sample space, and P is
the probability measure. ε{.} denotes the expectation operator.

2. Main results

2.1. Problem definition. Consider the discrete-time MJSs with sto-
chastic perturbation:

x (k + 1) = A (rk) x (k) +B (rk)u (k, rk) + f (x (k) , k)

+ (C (rk) + ∆C (rk))x (k)w(k) (2.1)

Where x (k) ∈ Rn is the system state, u (k, rk) ∈ Rm is the control
input,w(k) is a scalar Wiener process on a probability space (Ω, F, P )
relative to an increasing family (Fk)k∈N of σ-algebra Fk ⊂ F generated
by (w (k))k∈N with N the set of natural numbers, and is The unknown
nonlinear function f (x (k) , k), is the external disturbance with known
constant bound. Let {rk, k ≥ 0}be a process on the finite state space
l = {1, 2, ..., N}, and governs the switching among the different system
modes, whose mode transition probabilities are given as:

p{rk+1 = j | rk = i} = πij (2.2)

Where the πij > 0 with i ̸= j ,is transition rate from mode i to mode

j. and
∑N

j=1 πij = 1 , and the transition probability matrix is defined

as Π = (πij)i,j=1:N . for each rk = i ∈ l, we compose the matrix
A(rk) = Ai ,B(rk) = Bi, C(rk) = Ci and ∆C(rk) = ∆Ci for i-th
mode. The unknown matrix ∆Ci ∆Ci = EiFi(k)Hi, where Ei and
Hi are known real constant matrices, and Fi(k) is an unknown matrix
satisfying Fi(k)

TFi(k) ≤ I for any k ∈ l. Then The system (1) becomse

x(k + 1) = Aix(k) +Bi(u(k, i) + f(x, k) + (Ci +∆Ci)x(k)w(k) (2.3)

It is assumed that the system states may be lost when transmitted
from sensor to the controller, and the probability distribution of the
packet dropout obeys Bernoulli process θ ∈ R as follows:

P{θ = 1} = θ̄, P{θ = 0} = 1− θ̄, 0 ≤ θ̄ ≤ 1 (2.4)
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θ̄ is probability that any data packet will be lost. It is assumed that
the packet dropouts may happen successively. In order to compensate
the lost packet, the following method will be utilized as:

xs(k) = (1− θ)x(k) + θxs(k − 1) (2.5)

Which is termed as compensator. Now, the objective of this work is to
design a SMC law for the MJSs with stochastic perturbation.

2.2. Design of sliding controller. We will design an sliding-mode
controller as:

s(k, i) = (1− θ̄)Gix(k) + θ̄GiAixs(k − 2) (2.6)

Where θ̄ is the dropout probability in(2.4) and Gi = BT
i P̄i that Bi

define in(2.3) and P̄i =
∑N

j=1 πijPj for all i ∈ l .The matrices Pj >

o,j ∈ l will be determined in Theorem 2 . Suppose ϕ = θ̄/(1 − θ̄),
which substituted into (2.3) may yield the sliding mode dynamics in
the sliding surface s(i, k) = 0 as follows:

x(k + 1) = [Ai −Bi(GiBi)
−1GiAi]x(k)− ϕBi(GiBi)

−1GiAixs(k − 1)

+[I −Bi(GiBi)
−1Gi](Ci +∆Ci)x(k)w(k)

(2.7)

2.3. Sliding mode control and reachability. Define D(k) = (1 −
θ̄)GiBif(x(k), k) = [d1(k) d2(k) . . . dm(k)]

T . The nonlinear function
vectorf(x(k), k) is bounded, there exist known constants di ≤ di(k) ≤
d̄i, Then, let Do = [d1o d2o . . . dmo]

T ,Ds = [d1s d2s . . . dms]
T that:

dio =
di + di

2
, dis =

di − di
2

(i = 1, 2, . . . ,m), (2.8)

By means of the information from compensator (2.5) and the bounds
in (2.8), the desired SMC law is designed as follows:

u(k) = − 1

1− θ̄
(GiBi)

−1[GiAixs(k) +Do +Dssgn(Ss(k, i)), (2.9)

Where ss(k, i) is s(k, i) in (2.6) with x(k) replaced by xs(k) .

Theorem 2.1. [1] For the system (2.3) and subject to packet dropout
(2.4), if there exist symmetric matrices Pi > 0,Qi > 0, and scalar
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ϵi > 0,0 < γi < 1 satisfying the following LMI:

−Pi + ϵiH
T
i Hi ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 −Qi ∗ ∗ ∗ ∗ ∗ ∗ ∗
K1i K2i K3i ∗ ∗ ∗ ∗ ∗ ∗
P̄iCi 0 0 −P̄i ∗ ∗ ∗ ∗ ∗
K4i K5i 0 0 K6i ∗ ∗ ∗ ∗

(1− θ̄)GiCi 0 0 0 0 −I ∗ ∗ ∗
(1− θ̄)Q̄i

¯θQi 0 0 0 0 −Q̄i ∗ ∗
Q̄i −Q̄i 0 0 0 0 0 −α−2Q̄i ∗
0 0 0 ET

i P̄i 0 ET
i P̄iBi 0 0 −ϵiI


< 0

(2.10)

With ϕ = θ̄/(1 − θ̄), ϕ̄ = (4 + ϕ)1/2, ϕ̂ = (2ϕ + 2ϕ2)1/2, K1i =

[0ϕ̄AT
i P̄iϕ̄A

T
i G

T
i 0]

T , K2i = [0 0 0 ϕ̂AT
i G

T
i ]

T , K3i = diag{γiI, P̄i, GiBi, GiBi},
k4i = [2αAT

i GT
i 0], k5i = [0 2αAT

i GT
i ], K6i = diag{2I, 2I}, Then the

SMC law (2.8) can ensure that the state trajectories are driven into a
band of the sliding surface specified by (2.6) with Gi = BT

i Pi.

2.4. Simulation example. Consider the stochastic system (2.1) with
two modes and parameters as follows:

A1 =

0.05 0.1 −0.2
−0.1 0.1 −0.1
0 0.1 −0.2

 , B1 =

−1.2 −2.5
1.5 3.0
5.8 3.5

C1 =

−.3 0.1 0.3
0.2 0.1 −0.1
0.3 −0.4 −0.2


A2 =

 0.1 −0.3 −0.2
−0.2 0.1 −0.2
0.1 −0.2 −0.2

 , B2 =

 1.0 2.0
−1.1 1.5
3.4 2.7

C2 =

−0.2 0.1 0.3
0.2 −0.1 −0.1
0.2 0.3 −0.4


π11 = 0.3, π12 = 0.7, π21 = 0.6, π22 = 0.4 ,E1 = E2 = H1 = 0.5H2 =
[0.10.10.1]T , θ̄ = 0.2 To solve the LMIs in (2.10) via Matlab LMI tool-
box, we can obtain the P1, P2, Q1, Q2 matrixs and Gi = BT

i P̄i in sliding
function (2.6). The simulation results show that after 20 second time
the proposed sliding mode controller can effectively cope with the effect
of Markovian switching and packet losses, and ensure the exponentially
mean-square stable of the overall closed-loop system successfuly.
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Abstract. In this paper, we obtain the gradient of objective func-
tion using the concept of directionally derivative. Then the gra-
dient decent method is presented to solve the nonlinear optimal
control problem with free final state.

1. Introduction

Consider the controlled nonlinear dynamical system of the form

ẋ(t) = f(x(t)) + B(t)u(t), (1.1)

x(t0) = x0,

where x(.) ∈ Rn denotes the state variable, u(.) ∈ Rm denotes the con-
trol variable for t ∈ [t0, tf ]. The function f(x) ∈ Rn is a continuously
differentiable in all arguments and B(t) ∈ Rm×m is given with contin-
uous elements. It is desired to find the control u(t) that minimizes the
objective quadratic functional

J(x, u) :=
1

2
xT (tf )Ax(tf ) +

1

2

∫ tf

t0

xT (t)Qx(t) + uT (t)Ru(t)dt, (1.2)

subject to dynamical system (1.1) and u ∈ Uad. Here Q,A ∈ Rn×n

are given positive semi-definite matrices and R ∈ Rm×m is a positive
definite matrix.

The paper is organized as follows: In the next section, we state the
gradient of objective functional. In Section 3, a gradient decent method

Key words and phrases. Nonlinear optimal control , Gradient descent method.
∗ Speaker.
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is introduced for solving first order necessary optimality conditions for
ū.

2. The gradient of objective functional

For the derivation gradient of objective functional we introduce the
concept of differentiability in functional spaces. Let (U, ∥.∥U) and
(V, ∥.∥V ) will be tow normed spaces.

All definition and theorems of this section is given from [2].

Definition 2.1. Let F : U → V be a mapping, u ∈ U and h ∈ U . If
the limit

δF (u, h) := lim
s→0

F (u+ sh)− F (u)

s
,

exists in V , then it is called the directional derivative of F at u in the
direction h.

Definition 2.2. If δF (u, h) exists for all h ∈ U and δF (u, h) is a
continuous linear operator from U to V , then it is written in the form
δF (u)h, an F is said to be Gateaux differentiable at u. Hence δF (u)
is shown with F ′(u).

Theorem 2.3. (Chain rule) Let F : U → V and G : V → Z be
a Gateaux differentiable at u and F (u), respectively. Then E(u) =
G(F (u)) is also Gateaux differentiable at u and E ′(u) = G′(F (u))F ′(u).

Let C be a non empty subset of U and f : C ⊂ U → R a given
functional bounded from below. Consider the following optimization
problem:

min
u∈C

f(u). (2.1)

Theorem 2.4. Suppose that ū ∈ C is a local minimum of (2.1) and
v− ū is an admissible direction. If f(.) is directionally differentiable at
ū, in direction v − ū, then δf(ū)(v − ū) ≥ 0.

Corollary 2.5. Let C = U and ū be a local optimal solution for (2.1),
if f(.) is Gateaux differentiable at ū, then

f ′(ū)h = ∇f(ū)h = 0, ∀h ∈ U. (2.2)

If f(.) is a Lipschitz function then for any given u(.) there exists a
unique solution x(u) to dynamical system (1.1).

Definition 2.6. Consider the operator G : U → Y, u → x(u) =
G(u), which dedicate to each u ∈ U the solution x(u) to dynamical
system (1.1). The operatorG(u) is called as solution operator or control
to state operator.

41



A GRADIENT DESCENT METHOD

Using this operator, the nonlinear quadratic optimal control problem
(1.1) - (1.2) reduces to the following quadratic optimization problem

min
u∈Uad

f(u) : = min
1

2
xT (u)(tf )Ax(u)(tf ) (2.3)

+
1

2

∫ tf

t0

xT (u)(t)Qx(u)(t) + uT (t)Ru(t)dt.

Suppose ū is a local optimal solution for (2.3), from corollary (2.5), the
following necessary condition will be acquired:

f ′(ū)h = Jx(x(ū), ū)x
′(ū)h+ Ju(x(ū), ū)h = 0, (2.4)

where

Jx(x(ū), ū)x
′(ū)h = xT (ū)(tf )Ax

′(ū)h(tf ) +

∫ tf

t0

x(ū)Qx′(ū)hdt,

(2.5)

Ju(x(ū), ū)h =

∫ tf

t0

ūTRhdt. (2.6)

Using (2.5) and (2.6) in (2.4) we have

f ′(ū)h = xT (ū)(tf )Ax
′(ū)h(tf ) +

∫ tf

t0

xT (ū)Qx′(ū)hdt+

∫ tf

t0

ūTRhdt.

Definition 2.7. An element P (.) ∈ Y is called the costate related to
ū if it solves the following equation:

Ṗ (t) = −Qx(ū)(t)− fT
x (x(ū))P (t), P (tf ) = Ax(ū)(tf ).

Now we can proof the following important theorem.

Theorem 2.8. Let ū be a loced optimal solution to (2.3) and x̄ = x(ū)
its corresponding state, then there exists an costate P (t) such that the
following systems of equetions is satisfied:

˙̄x(t) = f(x̄(t)) +Bū(t), x̄(t0) = 0, (2.7a)

Ṗ (t) = −Qx̄(t)− fT
x (x̄(t))P (t), P (tf ) = Ax̄(tf ) (2.7b)

ū(t) = −R−1BTp(t), (2.7c)

System (2.7) is called the first order necessary optimality conditions for
ū. Also

∇uf(ū) = pTB + ūTR. (2.8)
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3. Solving the system (2.7) by gradient decent method

Here we use the gradient decent method to solve optimality system
(2.7). Consider the Algorithm 1 that solves the system (2.7) [1].

Algorithm 1 Solving the system (2.7)

1. Choose u0 ∈ U and solve the state equation (2.7a) and costate
equation (2.7b) to obtain y0 and p0.
2. Set k=0
3. repeat
4. Choose the descent direction dk = −∇f(uk) according to (2.8).
5. Determine αk = argminα>0{f(uk + αdk)}.
6. Set uk+1 = uk + αkdk and solve sequentially to obtain (xk+1, pk+1)

˙̄xk+1(t) = f(x̄k+1(t)) +Būk+1(t), x̄k+1(t0) = 0,

Ṗk+1(t) = −Qx̄k+1(t)− fT
x (x̄k+1(t))Pk+1(t), Pk+1(tf ) = Ax̄k+1(tf )

7. Set k = k+1.
8. until stopping criteria.

Example 3.1. Consider a the nonlinear problem as following

min{J = x2(tf ) +

∫ tf

0

u2(t)dt|ẋ = x+ u, x(0) = x0} (3.1)

Figure (A) shows the approximated and exact solution of control and
(B) shows the error of it.

(a) (b)
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Abstract. This paper focuses on solving multiobjective optimiza-
tion problems by introducing the concept of w-equitable efficiency,
where w is a finite decreasing sequence of positive numbers. More-
over, some theoretical and practical aspects of w-equitably efficient
solutions are discussed.

1. Introduction

Multiobjective programming has been studied for many years and
multiobjective methods have found applications in diverse areas of hu-
man life. It is well-known that any multiobjective optimization problem
starts usually with an assumption that the criteria are incomparable,
i.e., different criteria may have different units and physical interpreta-
tions. Many applications, however, arise from situations which present
equitable criteria. Equitability is based on the assumption that the cri-
teria are not only comparable (measured on a common scale) but also

2010 Mathematics Subject Classification. Primary 90C29; Secondary 91B08,
90B50.

Key words and phrases. Pareto, Nondominated, Efficiency, Equitability, Multi-
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anonymous (impartial). The latter makes the distribution of outcomes
among the criteria more important than the assignment of outcomes to
specific criteria, and therefore models equitable allocation of resources.

The equitable preference was first known as the generalized Lorenz
dominance [3, 5]. Kostreva and Ogryczak [1] are the first ones who in-
troduced the concept of equitability into multiobjective programming.
They have shown equitable efficiency to be a refinement of Pareto ef-
ficiency by adding, to the reflexivity, strict monotonicity and transi-
tivity of the Pareto preference order, the requirements of impartiality
and satisfaction of the principle of transfers. Then Kostreva et al. [2]
presented the theory of equitable efficiency in greater generality. More
recently, these results are extended by the authors [4].

2. Main results

Throughout this article the following notation is used. Let Rm be
the Euclidean vector space and y′, y′′ ∈ Rm. y′ ≦ y′′ denotes y′i ≤ y′′i for
all i = 1, . . . ,m. y′ < y′′ denotes y′i < y′′i for all i = 1, . . . ,m. y′ ≤ y′′

denotes y′ ≦ y′′ but y′ ̸= y′′. The set {y ∈ Rm : y ≧ 0} is denoted by
Rm

+ .
Consider a decision problem defined as an optimization problem with

m objective functions. For simplification we assume, without loss of
generality, that the objective functions are to be minimized. The prob-
lem can be formulated as follows:

min {(f1(x), f2(x), . . . , fm(x))} ,
subject to x ∈ X (2.1)

where x denotes a vector of decision variables selected from the feasible
set X and f(x) = (f1(x), f2(x), . . . , fm(x)) is a vector function that
maps the feasible set X into the objective (criterion) space Rm

+ . We
refer to the elements of the objective space as outcome vectors. An
outcome vector y is attainable if it expresses outcomes of a feasible
solution, i.e., y = f(x) for some x ∈ X. The set of all attainable
outcome vectors will be denoted by Y = f(X).

Definition 2.1. Preference relations satisfying the following axioms
are called equitable rational preference relations:

1. Reflexivity: for all y ∈ Rm: y ⪯ y.
2. Transitivity: for all y′, y′′, y′′′ ∈ Rm: y′ ⪯ y′′ and y′′ ⪯ y′′′ ⇒ y′ ⪯

y′′′.
3. Strict monotonicity: for all y ∈ Rm: y − ϵei ≺ y for ϵ > 0 where

ei denotes the ith unit vector in Rm.
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4. Impartiality: for all y ∈ Rm: (y1, . . . , ym) ≃ (yτ(1), . . . , yτ(m)) for
any permutation τ .

5. Principle of transfers: for all y ∈ Rm: yi > yj ⇒ y− ϵei + ϵej ≺ y
for 0 < ϵ < yi − yj.

We say that outcome vector y′ equitably dominates y′′ (y′ ≺e y′′),
iff y′ ≺ y′′ for all equitable rational preference relations ⪯. We say
that a feasible solution x ∈ X is an equitably efficient solution of the
multiple criteria problem (2.1), if and only if there does not exist any
x′ ∈ X such that f(x′) ≺e f(x). The relation of equitable dominance
⪯e can be expressed as a vector inequality on the cumulative ordered
outcomes.

Definition 2.2. Let y ∈ Rm
+ .

1. Let Θ : Rm
+ → Rm

+ be the ordering map defined as Θ(y) =
(θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ . . . ≥ θm(y), θi(y) =
yτ(i) for i = 1, 2, . . . ,m, and τ is a permutation of the set {1, 2, . . . ,m}.

2. Let w = (wj)
m
j=1 be a finite sequence. The ordering map Θw :

Rm
+ → Rm

+ is defined by, Θw(y) = (w1θ1(y), w2θ2(y), . . . , wmθm(y)).

Definition 2.3. We say that outcome vector y′ ∈ Y w-equitably dom-
inates y′′ ∈ Y iff Θw(y

′) ≺ Θw(y
′′) for all equitable rational preference

relations ⪯, and that denoted by y′ ≺we y
′′.

Definition 2.4. We say that outcome vector y ∈ Y is w-equitably
nondominated iff there does not exit y′ ∈ Y such that y′ ≺we y. Also,
we say that feasible solution x ∈ X is a w-equitably efficient solu-
tion of the multiobjective problem (2.1), iff y = f(x) is w-equitably
nondominated.

Similar to the relation of w-equitable dominance, we can define the
relation of w-equitable indifference ≃we (indifference for all equitable
rational preference relations) and the relation of w-equitable weak dom-
inance ⪯we (weak preference for all equitable rational preference rela-
tions). To make it practical, w-equitable efficiency can be defined in
terms of vector inequalities. In order to do that, we define certain
mapping.

Definition 2.5. The cumulative ordering map Θw : Rm
+ → Rm

+ is
defined by,

Θw(y) = (θ̄w1(y), θ̄w2(y), . . . , θ̄wm(y))

where θ̄wk
(y) =

∑k
j=1wjθj(y) for k = 1, 2, . . . ,m and θj’s are as defined

in Definition 2.2.

Note that in general Θ(Θw(y)) ̸= Θw(y), but if w1 ≥ w2 ≥ . . . ≥ wm

this relation is established.
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Definition 2.6. Suppose that y′, y′′ ∈ Y are two outcome vectors. The
relation ≤wi, <wi and =wi are defined as follows:

y′ ≤wi y
′′ ⇔ Θw(y

′) ≦ Θw(y
′′),

y′ <wi y
′′ ⇔ Θw(y

′) ≤ Θw(y
′′),

y′ =wi y
′′ ⇔ Θw(y

′) = Θw(y
′′).

In the main theorem, we will discuss the relationship between two
preference ⪯we and ≤wi.

Theorem 2.7. Let w1 ≥ w2 ≥ . . . ≥ wm and y′, y′′ ∈ Y be two outcome
vectors. We have

y′ ⪯we y
′′ ⇔ y′ ≤wi y

′′,

y′ ≺we y
′′ ⇔ y′ <wi y

′′.

Note that Theorem 2.7 permits one to express w-equitable efficiency
for problem (2.1) in terms of the standard efficiency for the multiob-
jective problem with objectives Θw(f(x)):

min{Θw(f(x)) : x ∈ X}. (2.2)

Theorem 2.8. Let w1 ≥ w2 ≥ . . . ≥ wm and let x ∈ X be a feasi-
ble solution. x is efficient solution of the multiobjective problem (2.2)
if and only if it is w-equitably efficient solution of the multiobjective
problem (2.1).

Remark 2.9. Note that if wj = 1 for j = 1, 2, . . . ,m, then Θw(y) = Θ(y)
and Θw(y) = Θ(y), so the relation ⪯we becomes the relation ⪯e. Hence,
the results of [1] are obtained.
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Abstract. In this paper, a novel methodology for detecting fuzzy op-
timal solutions of fuzzy optimal control problems governed by fuzzy
differential equations is presented. For this purpose, using partial order-
ing and parametric representation, the discussed fuzzy optimal control
problems are reduced to general optimal control problems in parametric
forms. Then by Pontryagin’s principle, a candidate for the solution of
the original problem is derived.

1. Introduction

To deal with fuzzy numbers it suffices to operate with their α-level set.
The use of α-level allows us to treat fuzzy numbers as a set of nested real
intervals. There are several models to obtain parametric representations of
fuzzy numbers and their arithmetic operators [1, 3]. Here, using the convex
combinations of the α-level set bounds of fuzzy numbers, two parametric
representations for α-level sets of fuzzy numbers are proposed. Based on
these parametric representations, the parametric arithmetic for fuzzy num-
bers is defined, and the α-level set of fuzzy valued functions is expressed as
a set of classical functions. Also, the concepts of derivative and integral for
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∗ Speaker.

48



HEIDARI, HASHEMI BORZABADI

fuzzy valued functions are rewritten. Under these settings, the fuzzy opti-
mal control problem converted to a general optimal control problem in the
parametric form. Then, the Pontryagin’s principle optimality condition can
be naturally elicited, which its solution leads to the construction of α-level
set of fuzzy optimal solution for the original problem.

2. Preliminaries

A fuzzy number A is a fuzzy set with non-empty bounded level sets [A]α =
[a−α , a

+
α ] for all α ∈ [0, 1], where a−α and a+α are its lower and upper bounds,

respectively. We denote the class of fuzzy numbers by F(R). The α-level
set [A]α = [a−α , a

+
α ] allows us to consider non-decreasing and non-increasing

parametric representations as follows:

[A]α = {a(t, α)| a(t, α) = a−α + t(a+α − a−α ); t ∈ [0, 1]}, (2.1)

[A]α = {a(t, α)| a(t, α) = a+α + t(a−α − a+α ); t ∈ [0, 1]}. (2.2)

If [A]α = {a(t, α)| a(t, α) = a−α + t(a+α − a−α ); t ∈ [0, 1]} and [B]α =
{b(t, α)| b(t, α) = b−α + t(b+α − b−α ); t ∈ [0, 1]} are the non-decreasing rep-
resentations of α-level sets of A,B ∈ F(R), respectively, and λ ∈ R, then
parametric arithmetics A∗B, with ∗ ∈ {+,−,×,÷}, and λ.A are defined as

[A ∗B]α = {a(t1, α) ∗ b(t2, α)| t1, t2 ∈ [0, 1]}, (2.3)

[λ.A]α = {λa(t, α)| t ∈ [0, 1]}. (2.4)

The difference defined in (2.3) has the property A − A ̸= 0. To overcome
this situation, the following definition can be proposed.

Definition 2.1. [2] The parametric difference (p-difference for short) of two
fuzzy numbers A,B ∈ F(R) is given by its α-level set as

[A⊖pB]α = {a(t, α)− b(t, α)| a(t, α) = a−α + t(a+α −a−α ), b(t, α) = b−α + t(b+α − b−α )}.

If A and B be two fuzzy numbers, then

A ⪯ B ⇔ a(t, α) ≤ b(t, α), ∀ t, α ∈ [0, 1]. (2.5)

” ⪯ ” is a partial ordering on fuzzy number space. Furthermore

A = B ⇔ a(t, α) = b(t, α), ∀ t, α ∈ [0, 1]. (2.6)

3. Fuzzy valued function

LetCk = (C1, C2, · · · , Ck)
T , Cj ∈ F(R), j = 1, · · · , k, be a k-dimensional

fuzzy vector which each element is a fuzzy number, and denotes the set of
all parameters that are present in a fuzzy valued function. Without loss
of generality, consider Ck to be an ordered set with respect to (w.r.t.) the
order maintained in the function. If the fuzzy valued function FCk : T ⊆
R → F(R) is derived from a continuous function by applying Zadeh’s ex-
tension principle, then using a non-decreasing parametric representation of
α-level set of fuzzy numbers, the α-level set of fuzzy valued function can be
expressed as a set of classical functions

[FCk(x)]α =
{
fc(t,α)(x)

∣∣fc(t,α) : T ⊆ R → R; c(t, α) ∈ [Ck]α

}
.
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Based on the concept of p-difference, the concept of p-differentiability of
fuzzy valued function can be defined.

Definition 3.1. [2] Let x0 ∈]a, b[ and h be such that x0+h ∈]a, b[, then the
p-derivative of the fuzzy valued function FCk :]a, b[→ F(R) at x0 is defined
as

F ′
Ck(x0) = lim

h→0

1

h
[FCk(x0 + h)⊖p FCk(x0)] .

If F ′
Ck(x0) ∈ F(R) exists, then FCk is called parametric differentiable

(p-differentiable for short) at x0.

Proposition 3.2. [2] Let FCk :]a, b[→ F(R) be defined in terms of its α-

level set [FCk ]α = {fc(t,α)(x)|fc(t,α) :]a, b[→ R, c(t, α) ∈ [Ck]α}. If fc(t,α)(x)
is differentiable at x0 ∈]a, b[ and for all α ∈ [0, 1], fc(t,α)(x0+h)−fc(t,α)(x0)
satisfies the conditions of Negoita-Ralescu characterization theorem, then
FCk is p-differentiable at x0 and there exists F ′

Ck(x0) ∈ F(R) such that

[F ′
Ck(x0)]α =

{
f ′c(t,α)(x0)

∣∣∣ fc(t,α) :]a, b[→ R, c(t, α) ∈ [Ck]α

}
.

Moreover [F ′
Ck(x0)]α =

[
min
t
f ′c(t,α)(x0),max

t
f ′c(t,α)(x0)

]
.

Definition 3.3. [2] The integral of a fuzzy valued function FCk : [a, b] →
F(R) with [FCk(x)]α = {fc(t,α)(x) | fc(t,α) : [a, b] → R, c(t, α) ∈ [Ck]α} can
be defined level-wise as[∫ b

a
FCk(x)dx

]
α

=
{∫ b

a
fc(t,α)(x)dx

∣∣∣fc(t,α) : [a, b] → R is integrable

w.r.t. x for everyc(t, α) ∈ [Ck]α

}
.

Note that C(T,F(R)) denotes the space of all continuous fuzzy valued

functions FCk : T ⊆ R → F(R), and Ĉ1(T,F(R)) denotes the space of
all continuously p-differentiable fuzzy valued functions FCk : T ⊆ R →
F(R) that their corresponding real valued function fc(t,α) : T ⊆ R → R is

differentiable for all t ∈ [0, 1]k, α ∈ [0, 1].

4. Pontryagin’s principle of optimality

Consider the fuzzy optimal control problem which is described as follows:
Find the fuzzy control UZr ∈ C([x0, xf ],F(R)), and its corresponding fuzzy

state YDn ∈ Ĉ1([x0, xf ],F(R)) such that the fuzzy pair (YDn , UZr) minimizes
the fuzzy valued functional

J(YDn , UZr ) =

∫ xf

x0

GCk(x, YDn , UZr )dx, (4.1)

subject to
Y ′
Dn = HEm(x, YDn , UZr ) (4.2)

with the following boundary conditions

YDn(x0) = A, YDn(xf ) = B. (4.3)
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Definition 4.1. A fuzzy pair (Y ∗
Dn , U∗

Zr ) ∈ Ĉ1([x0, xf ],F(R))×C([x0, xf ],F(R))
is called an optimal solution for problem (4.1)-(4.3) with respect to partial
order (2.5), if Y ∗

Dn is the solution of (4.2)-(4.3) corresponding to the fuzzy
optimal control U∗

Zr and

J(Y ∗
Dn , U∗

Zr ) ⪯ J(YDn , UZr ), (4.4)

for every comparable pair (YDn , UZr ) ∈ Ĉ1([x0, xf ],F(R)) × C([x0, xf ],F(R))
satisfying (4.2) and (4.3).

The next theorem give a necessary condition for the optimal solution of
fuzzy optimal control problem (4.1)-(4.3) from Pontryagin’s principle.

Theorem 4.2. Let GCk ,HEm ∈ Ĉ1([x0, xf ],F(R),F(R)) and a fuzzy pair
(Y ∗

Dn , U∗
Zr) be an optimal solution for fuzzy optimal control problem (4.1)-

(4.3). Then there exists a real valued function ψ∗
w(t,t′,α) ∈ C1([x0, xf ],R)

such that
∂gc(t1,α)

∂yd(t,α)
+ ψ∗

w(t,t′,α)

∂he(t2,α)

∂yd(t,α)
= −ψ∗′

w(t,t′,α),

∂gc(t1,α)

∂uz(t′,α)
+ ψ∗

w(t,t′,α)

∂he(t2,α)

∂uz(t′,α)
= 0,

for all fixed t ∈ [0, 1]n, t′ ∈ [0, 1]r, t1 ∈ [0, 1]k, t2 ∈ [0, 1]m and t3, t4, α ∈ [0, 1].

Hence, the α-level sets of the fuzzy optimal control U∗
Zr and its corre-

sponding fuzzy state Y ∗
Dn for fuzzy optimal control problem (4.1)-(4.3), i.e.,

[U∗
Zr (x)]α = {u∗z(t′,α)(x)|u

∗
z(t′,α) : [x0, xf ] → R; z(t′, α) ∈ [Zr]α},

[Y ∗
Dn(x)]α = {y∗d(t,α)(x)|y

∗
d(t,α) : [x0, xf ] → R;d(t, α) ∈ [Dn]α},

are obtained from optimal solution of its corresponding general optimal
control problem in the parametric form

min j(yd(t,α), uz(t′,α)) =

∫ xf

x0

gc(t1,α)(x, yd(t,α), uz(t′,α))dx,

s.t. y′d(t,α) = he(t2,α)(x, yd(t,α), uz(t′,α)),

yd(t,α)(x0) = a(t3, α), yd(t,α)(xf ) = b(t4, α).
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Abstract. In this paper, the concept of infinite order w-equitable
dominance is introduced as a refinement of equitable and w-equitable
dominance concepts. Moreover an algorithm is presented to gen-
erate subsets of equitably efficient solutions, which aims to offer a
limited number of representative solutions to the decision maker.

1. Introduction

In equitable multiobjective optimization, the focus is on the distri-
bution of outcome values while ignoring their ordering. This means
that, we are interested in a set of values of the objectives without tak-
ing into account which objective is taking a specific value. Kostreva
et al. [1, 2] are the first ones who introduced the concept of equitabil-
ity into the multiobjective programming. They have shown that the
set of equitably efficient solutions are contained within the set of ef-
ficient solutions for the same problem. More recently, the authors [3]
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90B50.

Key words and phrases. Pareto, Nondominated, Efficiency, Equitability, Multi-
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generalized the concept of equitable efficiency by introducing equitable
B-efficiency.

Throughout this article the following notation is used. Let Rm be
the Euclidean vector space and y′, y′′ ∈ Rm. y′ ≦ y′′ denotes y′i ≤ y′′i for
all i = 1, . . . ,m. y′ < y′′ denotes y′i < y′′i for all i = 1, . . . ,m. y′ ≤ y′′

denotes y′ ≦ y′′ but y′ ̸= y′′. The set {y ∈ Rm : y′ ≧ 0} is denoted by
Rm

+ . Consider an optimization problem

min {(f1(x), f2(x), . . . , fm(x))} ,
subject to x ∈ X (1.1)

where x denotes a vector of decision variables selected from the feasible
set X and f(x) = (f1(x), f2(x), . . . , fm(x)) is a vector function that
maps the feasible set X into the objective (criterion) space Rm

+ and
Y = f(X).

2. Main results

The following definition is a necessary notion for the solution con-
cepts of interest in this paper.

Definition 2.1. Let y ∈ Rm
+ .

1. An ordering map Θ : Rm
+ → Rm

+ is a function defined as Θ(y) =
(θ1(y), θ2(y), . . . , θm(y)), where θ1(y) ≥ θ2(y) ≥ . . . ≥ θm(y), θi(y) =
yτ(i) for i = 1, 2, . . . ,m, and τ is a permutation of the set {1, 2, . . . ,m}.

2. Let w = (wj)
m
j=1 be a finite sequence and w1 ≥ w2 ≥ . . . ≥

wm. The ordering map Θw : Rm
+ → Rm

+ is defined by, Θw(y) =

(w1θ1(y), w2θ2(y), . . . , wmθm(y)).Also the cumulative ordering map Θw :
Rm

+ → Rm
+ is defined by, Θw(y) = (θ̄w1(y), θ̄w2(y), . . . , θ̄wm(y)) where

θ̄wk
(y) =

∑k
j=1 wjθj(y) for k = 1, 2, . . . ,m.

Definition 2.2. We say that a vector y′ ∈ Y w-equitably dominates
y′′ ∈ Y , denoted by y′ ≤we y

′′, if and only if

Θw(y
′) ≤ Θw(y

′′).

A vector y ∈ Y is w-equitably nondominated iff there does not exit
y′ ∈ Y such that y′ ≤we y. Also, we say that the feasible solution
x ∈ X is a w-equitably efficient solution of the multiobjective problem
(1.1), iff y = f(x) is w-equitably nondominated.

Theorem 2.3. Let w = (wj) and v = (vj) be two vectors in Rm
+ . If

w1

v1
≥ w2

v2
≥ . . . ≥ wm

vm
, then y′ ≤vi y

′′ ⇒ y′ ≤wi y
′′ for all y′, y′′ ∈ Rm

+ .
This means that, if x ∈ X is a w-equitably efficient solution of the
multiobjective problem(1.1), then it is a v-equitably efficient solution of
the same problem.
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From now on the set of nonnegative integers is denoted by N =
{0, 1, 2, . . .}. If k ∈ N, we put wk = (wk

i ), especially for k = 0, w0 =
(1, 1, . . . , 1) and ≤w0i=≺e.

Corollary 2.4. If w = (wj) is a decreasing sequence in Rm
+ then

y′ ≤wki y
′′ ⇒ y′ ≤wk+1i y

′′

for all y′, y′′ ∈ Rm
+ and k ∈ N. This means that, if x ∈ X is a wk+1-

equitably efficient solution of the multiobjective problem(1.1), then it is
a wk-equitably efficient solution of the same problem.

We define infinite order w-equitable dominance as follows: ≤w∞=∪
k∈N ≤wk . This means that,

y′ ≤w∞ y′′ ⇔ y′ ≤wk y′′ (for some k ∈ N).

For example suppose that y′ = (6, 1, 4), y′′ = (2, 7, 0.5), w1 = 0.8, w2 =
0.6 and w3 = 0.4. Since Θwk(y′) and Θwk(y′′) cannot be compared
in terms of wk-equitable dominance for k = 0, 1, 2, we compare in-
stead Θw3(y′) and Θw3(y′′). We have Θw3(y′) = (3.072, 3.936, 4) and
Θw3(y′′) = (3.584, 4.016, 4.048), so y′ ≤w3 y′′. Hence y′ ≤w∞ y′′.
By interaction with Corollary 2.4, we offer an algorithm to reduce the
equitably efficient solutions of the multiobjective problem (1.1).

Algorithm 2.5. Step 1. Put k = 0; Step 2. Get weights w1, w2, . . . , wm

such that w1 ≥ w2 ≥ . . . ≥ wm, according to the decision maker; Step 3.
Put w = wk; Step 4. Solve the multiobjective problem min{Θw(f(x)) :
x ∈ X}; Step 5. If the decision maker chooses the desired solution,
stop; Otherwise, put k = k + 1 and go to Step 3.

0 1 2 3 4 5

0
2

4
6
2

2.5

3

3.5

4

4.5

Figure 1: The Pareto, equitable and equitable w-dominance fronts (objective space) for

the VFM1 problem (2 variables and 3 objectives).
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In the following example, a large number of random solutions are gen-
erated for scalable test function. From this large set of solutions, the
nondominated solutions with respect to Pareto dominance, equitable
dominance and w-equitable dominance are calculated.

Example 2.6. The test problem considered is the VFM1 [4],

min
x∈R2

y = {f1(x), f2(x), f3(x)}

f1(x) = x2
1 + (x2 − 1)2

f2(x) = x2
1 + (x2 + 1)2 + 1

f3(x) = (x1 − 1)2 + x2
2 + 2

x1, x2 ∈ [−2, 2].

Figure 1 shows the Pareto, equitable and w-equitable dominance
fronts (objective space) for w1 = 0.8, w2 = 0.6 and w3 = 0.4. In
Figure 1 from 5000 random solutions, 469 solutions (blue point) are
rationally nondominated. Suppose that w1 = 0.8, w2 = 0.6 and w3 =
0.4, 39 solutions (green diamond) are equitably nondominated which
are obtained in first iteration of Algorithm 2.5. In second, third and
fourth iteration of Algorithm 2.5 24 solutions (red circle), 12 solutions
(black point) and 3 solutions (yellow star) are obtained which are wk-
equitably nondominated for k = 1, 2, 3, respectively.
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Abstract. Identification of master regulatory genes is an impor-
tant task in systems biology. The aim of this paper is to determine
minimum cardinality set of master regulatory genes with more in-
fluence in weighted gene regulatory network. This problem can be
formulated as integer biobjective problem based on the minimum
dominating set model. The biobjective problem is reduced to single
objective by sum-weighted method, then a parametric algorithm is
introduced for solving the single objective problem. The proposed
model is applied on a human network.

1. Introduction

Gene regulatory networks (GRN) are of well-known biological net-
works that consist of a set of genes or proteins, and regulatory relation-
ships between them. The analyzing of these networks is very important
in drug design for various lethal diseases such as cancer.

There is set of genes known as master regulatory genes that involved
in controlling the expression of other genes in a gene regulatory net-
work. In this paper, we consider weighted gene regulatory network and
determine a set of master regulatory genes with minimum cardinality
and maximum weight. This problem is formulated as biobjective op-
timization problem based on the minimum dominating set problem.
Firstly, master regulatory gene sets with minimum cardinality is deter-
mined, then a set is identified which has maximum weight.

Key words and phrases. Dominating set, Biology, Master gene, Gene network.
∗ Speaker.

56



GHAFFARI HADIGHEH, BAKHTEH, CHAPARZADEH

The paper is organized as follows: In the next section, we state
and formulate the minimum dominating set problem. In Section 3,
we present the integer biobjective programming formulation of the
weighted gene regulatory network. The computational results are given
in Section 4, and Section 5 contains the conclusions.

2. Minimum dominating set

A dominating set (DS) for graph G = (V,E) is a subset of vertices
S ⊆ V , where every vertex v ∈ V is either v ∈ S or is adjacent to
at least one vertex in S. A dominating set S ⊆ V is the minimum
dominating set (MDS) if it has the smallest cardinality dominating set
among all dominating sets of the graph G. It is well-known that finding
a minimum dominating set in a graph G is an NP-hard decision [2]. In
MDS problem, we assign a binary variable xv associated to each node
v ∈ V in graph G = (V,E). The MDS problem formulated as integer
linear programming:

min
{∑

v∈V

xv

∣∣ xv +
∑

(u,v)∈E

xu ≥ 1, xv ∈ {0, 1}, ∀v ∈ V
}
. (2.1)

If xv = 1, then node v belongs to MDS. There may exist more than
one optimal solution for problem (2.1). Therefore, it is difficult to
find which MDS represents the more useful nodes. To overcome this
problem, in the Section 3, we will introduce weighted gene regulatory
network problem. In gene network each gene has a collective influence,
in this paper we assume collective influence of each gene as its weight.

Collective Influence. Collective influence (CI) describes how many
other nodes can be reached from a given node [3]. The collective influ-
ence of a node v is defined as the following formula:

CIℓ(v) = (dv − 1)
∑

u∈∂Ball(v,ℓ)

(du − 1) (2.2)

where dv is the degree of node v and ∂Ball(v, l) is the set of nodes at
distance ℓ from node v. There exists a free parameter ℓ, the distance,
which according to [3], we choose ℓ ≥ 1 but not too large (e.g. ℓ = 1, 2, 3
), because in too large distance ℓ the boundaries of the network are
reached and the collective influence of all nodes approaches zero.

3. The weighted gene regulatory network formulation

Consider a given WGRN is represented as a graph G = (V,E,w). A
node v ∈ V corresponds to a gene of WGRN and an edge (u, v) ∈ E
represents an interaction between two genes u and v. The function
w : V → R+ associates a nonnegative weight to each gene of the set
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V . Here, weight wv shows the relative collective influence value of
node v. In presented model, the task is to identify a set of genes with
minimum cardinality and maximum weight in a WGRN, such that set
of determined master genes control the given WGRN. Therefore, the
problem formulated as following biobjective program

WGRN : min
∑
v∈V

xv, max
∑
v∈V

wvxv (3.1)

s.t. xv +
∑

(u,v)∈E

xu ≥ 1, ∀v ∈ V,

xv ∈ {0, 1}, ∀v ∈ V.

3.1. Solving problem (3.1) by parametric algorithm. TheWGRN
problem can be reduced to a single objective problem by using weighted-
sum method. The scalarized relaxation optimization problem with
parametric weight α ∈ (0, 1) is as follows

g(α) = min
{
(
1

w
+ α(1− 1

w
))Tx

∣∣ (A+ I)x− r = 1, x, r ≥ 0
}
,

where A ∈ Rn×n is adjacency matrix and I ∈ Rn×n is identical matrix
and vector r ∈ Rn is slack vector.

Suppose c = 1
w
, ∆c = 1− 1

w
, c(α) = c+α∆c. Algorithm 1 calculated

the optimal value function g(α) when the vector c is perturbed by a
scalar multiple of ∆c to c(α) = c+ α∆c [4].

Algorithm 1 The Optimal Value Function g(α), α ≥ 0

Input
An optimal solution (x∗, r∗) of (Pα) with α = 0 and a perturbation vector ∆c;
Begin
ready=false, k = 1, x0 = x∗, r0 = r∗;
while not ready do

Solve maxα,y,s{α : AT y + s = c+ α∆c, sTxk−1 = 0, yT rk−1 = 0, s, y ≥ 0, };
if this problem is unbounded then

ready=true;
else

let (αk, y
k, sk) be an optimal solution;

end if
Solve min

x,r
{∆cTx : Ax− r = b, xT sk = 0, rT yk = 0, x, r ≥ 0};

if this problem is unbounded then
ready=true;

else
let (xk, rk) be an optimal solution, k = k + 1;

end if
end while
End
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The algorithm 1 finds the successive break points of function g on
the nonnegative real line as well as the slopes of g on the successive
linearity intervals. Here, we solved all the programming problems by
using solver CPLEX that can solve large-scale programming problems.

4. Computational experience

In this section, WGRN model is implemented on a human network
with binary interactions for H. sapiens. The dataset H. sapiens was
taken from the High-quality INTeractomes (HINT) database [1]. For
solving WGRN model, first weighted network is constructed by com-
puting a weight for each gene of given network using definition CI.
Table 1 shows information and computational results for H. sapiens
network by Algorithm 1. By using computational results, one can see
that what percentage of genes can control entire given network.

Table 1. Statistics and the number of master regula-
tory genes of binary dataset H. sapiens.

Number of Number of α Number of % Master Genes
Genes Interactions master genes

0 1412 17.95
7,865 24,368 2.2182e-05 1391 17.69

1 1391 17.69

5. Conclusion

In this study, the weighted gene regulatory network was introduced
by appropriation a weight for each gene. The proposed model formal-
ized the problem of identifying a set master regulatory genes with the
minimum cardinality set and maximum weight as integer biobjective
problem. This model is reduced to single objective problem by using
weighted-sum. Then this problem is solved by a parametric algorithm.
Finally, the proposed model was applied on a human network.
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Abstract. The aim of this paper, is to introduce an analytically
solution for fractional fuzzy optimal control Bolza problems when
the initial state is also fuzzy. First the problem is transformed into
two fractional optimal control problems by concept of α-cut. Then,
we apply a new Riccati differential equation determined from Pon-
tryagin’s minimum principle to transfer each mentioned fractional
optimal control problem to a fractional differential system. By
showing the existence of solution, numerical simulation is also pre-
sented for different values of fractional order and the results are
compared.

1. Introduction

We know that fuzziness is a very adequate tool to present many phe-
nomena; also, in resent years, fractional calculus plays a very important
roles in mathematics and other subject. Both these two facts together
cause to face with the fuzzy fractional problem in optimal control the-
ory where a fuzzy differential system in fractional order (FFOCP) is
involved [2]. To continue, here, we consider a fractional fuzzy control

2010 Mathematics Subject Classification. Primary 49J15; Secondary 12H20.
Key words and phrases. fractional differential equation, optimal control, fuzzy.
∗ Speaker.
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problem and turn it to two fractional control problems and then we
use the fractional Pontryagin Maximum Principle to solve it. Consider
the following optimal control problem:

Min :

∫ b

a

f0(t, x̃(t), ũ(t))dt

S. to :
(
Dβ

α+x̃
)
(t) = f0(t, x̃(t), ũ(t)); x̃(a) = x̃0, (1.1)

(1.2)

where t ∈ (a, b) ⊆ R, x̃ is a fuzzy bounded trajectory, x̃0 is a fuzzy ini-
tial condition, ũ is fuzzy control variable, f and f0 are two given contin-

ues functions [4]; here
(
Dβ

a+ x̃
)
(t) denotes the left Riemann-Liouville

derivative at order β ∈ (0, 1). We remind that the aim of this paper,
is to find a fuzzy solution for these kind of problems.

2. Fuzzy Riemann-liouville differential

This section, is devoted to present the definition of fuzzy Riemann-
Liouville integrals and derivatives by Hukuhara difference. We denote
CF [a, b] as the space of all continuous fuzzy-valued functions on [a, b]
[2].

Definition 2.1. Let f ∈ CF [a, b]∩LF [a, b]. The α-cut representation of

f is shown by f(x;α) =

[
f
−
(x;α), f̄(x;α)

]
for 0 ≤ α ≤ 1, where f

−
(x;α)

and f̄(x;α) are defined as lower and upper bounds of α-level set of f .

Moreover, for x0 ∈ (a, b) ⊆ R and Φ(x) ≡ 1
Γ(1−β)

∫ x

a
f(t)

(x−t)(β)
, f is called

Riemann-Liouville H-differentiable of order 0 < β ≤ 1 at x0, if there

exist an element
(
Dβ

(α+)f
)
(x0) such that for sufficiently small h > 0 ,

we have ([19])
(
Dβ

(α+)f
)
(x0) = lim

h→0+

Φ(x0+h)⊖Φ(x0)
h

= lim
h→0+

Φ(x0)⊖Φ(x0−h)
h

where ⊖ is the Hukuhara difference [1]; also, we have the similar results

for
(
Dβ

(b−)f
)
(x ; a).

3. Fractional Fuzzy Optimal Control Problem

Consider the following FFOCPs:

Min :

∫ b

a

f0(t, x̃(t), ũ(t))dt

S. to :
(
Dβ

α+x̃
)
(t) = f(t, x̃(t), ũ(t)); x̃(a) = x̃0 = (p, q, r), (3.1)
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where the initial condition, x̃0 = (p, q, r) is a triangular fuzzy number
and 0 < β ≤ 1. By using the concept of α-cut and parameterization of
a fuzzy number [3], for each 0 ≤ α ≤ 1 we can write (3.1) in complex
space as follows:

Min :

∫ b

a

f0

(
t, x

−
(t;α), u

−
(t;α)

)
+ if0 (t, x̄(t;α), ū(t;α)) dt

S. to :



(
Dβ

(α+)x−

)
(t;α) + i

(
Dβ

(α+)x̄
)
(t;α) =

f

(
t, x

−
(t;α), u

−
(t;α)

)
+ if (t, x̄(t;α), ū(t;α)) ;

x
−
(a;α) + ix̄(a;α) = (qα + p(1− α)) + i (qα + r(1− α)) ;

hence, the new description of (3) can be turned in (3.2) and (3.3):

Min :

∫ b

a

f0

(
t, x

−
(t;α), u

−
(t;α)

)
dt

S. to :


(
Dβ

(α+)x−

)
(t;α) = f

(
t, x

−
(t;α), u

−
(t;α)

)
;

x
−
(a;α) = (qα + p(1− α)) ;

(3.2)

and

Min :

∫ b

a

f0 (t, x̄(t;α), ū(t;α)) dt

S. to :

{ (
Dβ

(α+)x̄
)
(t;α) = f (t, x̄(t;α), ū(t;α)) ;

x̄(a;α) = (qα + r(1− α)) ;
(3.3)

Solving them, for given α we generate the optimal pairs

(
x
−

∗(t;α), u
−

∗(t;α)

)
and (x̄∗(t;α), ū∗(t;α)) for (3.2) and (3.3) respectively; therefore, solu-
tion of (3.1) is determined as:

x̃∗(t, α) =

[
x
−

∗(t;α), x̄∗(t;α)

]
; ũ∗(t, α) =

[
u
−

∗(t;α), ū∗(t;α)

]
4. Riccati differential equation for Fractional OCP

For the fractional optimal control problem:

minJ =
1

2
S(t1)x

2(t1) +
1

2

t1∫
t0

{
P (t)x2(t) + 2q(t)x(t)u(t) + r(t)u2(t)

}
dt

(4.1)
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S. to :
(
Dβ

t0x
)
(t) = a(t)x(t) + b(t)u(t); x(t0) = x0. (4.2)

The Hamiltonian can be shown as:

H =
1

2
P (t)x2+q(t)x(t)u(t)+

1

2
r(t)u2(t)+λ(a(t)x(t)+b(t)u(t)). (4.3)

Then, based on the fractional Pontryagin system in (4.2), we have:(
Dβ

t0λ
)
(t) =

∂H

∂x
= px+ qu+ λa; (4.4)

∂H

∂u
= qx+ ru+ λa = 0. (4.5)

(4.5) gives us:
u = −r−1(qx− λb). (4.6)

By applying (4.6) in the differential equation (4.2), we have:

Dβ
t0x = (a− r−1q)x− r−1λb2. (4.7)

In the similar way, we obtain:

Dβ
t1λ = (p− r−1q2)x+ (−r−1qb+ a)λ. (4.8)

Now, let λ(t) = k(t)x(t); then we can reach to:(
Dβ

t1k
)
(t) = (p− r−1q2)x+ (−r−1qb+ a)k(t); k(t1) = s(t1). (4.9)

Then from calculating k(t), one can determine λ(t) according to x(t).
This fact makes (4.7) a fractional differential equation with an initial
condition; by solving it we can compute the optimal trajectory for (4.2);
then (4.6) gives us the optimal control of the original problem.

Regarding the shortage of space, numerical results will be presented
in the oral speech.
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Abstract. The purpose of this paper is to give a linear charac-
terization and also a gap function for quasiconvex programming
problems using adapted subdifferentials which generalize known
results in convex case.

1. Introduction and Preliminaries

In the present paper we consider an optimization problem, defined
as follows:

(M) : minimize f(x) subject to x ∈ C :=
{
x ∈ X | g1(x) ≤ 0, . . . , gn(x) ≤ 0

}
,

where f and gi for i = 1, . . . , n are functions defined on a normed
vector space X with values in R ∪ {∞}.

In the field of nonsmooth optimization, generalized convex functions
play an interesting and important role because of their theoretical as-
pects as well as their wide range of applications. In this article, as an
application of the results given in Ref. [4], a connection between linear
programs and nonlinear quasiconvex problems is given. Considering
a feasible solution x0 of (M), a linear approximation of (M), called

2010 Mathematics Subject Classification. Primary 90C34; Secondary 90C40;
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(LM), is constructed and relationship between the optimality of x0 for
(M) and its optimality for (LM) is investigated. The final part of this
note is devoted to characterizing the optimality for (M) utilizing the
gap function notion. This notion is a very important tool in studying
optimization problems and variational inequalities; see e.g. [1, 2, 3].

We observe that since the proofs of our theorems are long, we did
not state them in this extended abstract.

Hereafter, φ : X → R ∪ {∞} is a function which is finite at some
point x0 ∈ φ−1(R). The Plastria subdifferential and the Gutiérrez
subdifferential of φ at x0 are respectively defined as

∂<φ(x0) :=
{
x∗ ∈ X∗ | φ(x)−φ(x0) ≥

⟨
x∗, x−x0

⟩
∀x ∈ [φ < φ(x0)]

}
,

∂≤φ(x0) :=
{
x∗ ∈ X∗ | φ(x)−φ(x0) ≥

⟨
x∗, x−x0

⟩
∀x ∈ [φ ≤ φ(x0)]

}
,

where X∗ denotes the topological dual space of X, and

[φ < φ(x0)] :=
{
x ∈ X | φ(x) < φ(x0)

}
,

[φ ≤ φ(x0)] :=
{
x ∈ X | φ(x) ≤ φ(x0)

}
.

Some basic calculus rules of these subdifferentials can be found in Ref.
[5]. In Particular, both ∂<φ(x0) and ∂≤φ(x0) are either empty or
unbounded, and ∂≤φ(x0) ⊆ ∂<φ(x0). Also, ∂<φ(x0) = X∗ iff 0 ∈
∂<φ(x0) iff 0 ∈ ∂≤φ(x0) iff x0 is a minimizer of φ.

We say that φ : X → R∪{∞} is a Plastria function at x0 if its strict
sublevel set [φ < φ(x0)] is convex and such that

N
(
[φ < φ(x0)], x0

)
= R+∂

<φ(x0),

where N(M, x̄) denotes the normal cone of convex set M ⊆ X at x̄ ∈ X,
i.e.,

N(M, x̄) :=
{
y∗ ∈ X∗ |

⟨
y∗, x− x0

⟩
≤ 0 ∀x ∈ M

}
.

We also say φ is a Gutiérrez function at x0 if its sublevel set [φ ≤ φ(x0)]
is convex and such that

N
(
[φ ≤ φ(x0)], x0

)
= R+∂

≤φ(x0).

The Plastria and Gutiérrez functions have introduced in Ref. [4]. There
are characterized some various classes of functions which are being
Plastria and\or Gutiérrez.
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2. Main Results

At starting point of this section, for each i ∈ {1, . . . , n}, set
Ci :=

{
x ∈ X | gi(x) ≤ 0

}
.

Let x0 ∈ C be a feasible solution to (M). Consider the following
linear programming problem (LMx∗

0
x0
), for some x∗

0 ∈ ∂<f(x0)

(LMx∗
0

x0
) : minimize fx∗

0
x0
(x) := f(x0) + ⟨x∗

0, x− x0⟩ s.t. x ∈ Cx0 ,

in which

Cx0 =
{
x ∈ X | ⟨x∗

i , x− x0⟩ ≤ 0, ∀i ∈ {1, . . . , n}, ∀x∗
i ∈ ∂≤gi(x0)

}
.

The above model is a linear infinite programming problem, because of
the number of its constraints. The following theorem establishes the
relationship between the optimality of x0 for (M) and (LMx∗

0
x0
).

Theorem 2.1. Let x0 be a solution to (M) which is not a local min-
imizer of f . Let I :=

{
i ∈ {1, . . . , n} | gi(x0) = 0

}
. Assume that f

is a Plastria function at x0, g1, . . . , gn are u.s.c. at x0 and that for
every i ∈ I, gi is a Gutiérrez functions at x0. Furthermore, assume
that, there exist some k ∈ I and some z ∈ Ck such that gi(z) < 0 for
each i ∈ I\{k} (Slater condition). Then x0 is an optimal solution to
(LMx∗

0
x0
) for some x∗

0 ∈ ∂<f(x0).

The above theorem is valid if one replaces Cx0 with the bigger set

Ĉx0 :=
{
x ∈ X | gi(x0) + ⟨x∗

i , x− x0⟩ ≤ 0, ∀i ∈ I, ∀x∗
i ∈ ∂≤gi(x0)

}
={

x ∈ X | ⟨x∗
i , x− x0⟩ ≤ 0, ∀i ∈ I,∀x∗

i ∈ ∂≤gi(x0)
}
.

The converse of Theorem 2.1 is not valid. Example 2.2 shows it.

But if one considers Ĉx0 instead of Cx0 , then the converse holds as
well. Theorem 2.3 addresses this result.

Example 2.2. Consider the following problem:

min f(x) := x
s.t. g1(x) ≤ 0,

g2(x) ≤ 0,

where

g1(x) :=

{
2x x ≤ 0
x x > 0.

and g2(x) := −x− 1.

Here, x ∈ R, and C = [−1, 0]. Considering x0 = 0, we have

∂<f(x0) = [1,+∞), ∂≤g1(x0) = [2,+∞), ∂≤g2(x0) = (−∞,−1].
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Hence, (LMx∗
0

x0
) can be written as follows

min αx
s.t. βx ≤ 0, ∀β ≥ 2,

−1 + θx ≤ 0, ∀θ ≤ −1,

in which α ≥ 1 is a fixed scalar. The only feasible solution of this
problem is x0 = 0. Therefore, x0 is the optimal solution of (LMx∗

0
x0
)

while it is not optimal for the considered (M).

Theorem 2.3. Let x0 ∈ C be an optimal solution to

(L̂Mx∗
0

x0
) : minimize fx∗

0
x0
(x) := f(x0) + ⟨x∗

0, x− x0⟩ s.t. x ∈ Ĉx0 ,

for some x∗
0 ∈ ∂<f(x0). If f is finite at x0, then x0 is an optimal

solution to (M).

Now, along the lines of [1], the gap function ϕ : X × X∗ −→ R, at
x ∈ C and x∗ ∈ ∂<f(x0), is defined by

ϕ(x, x∗) = sup
{
⟨x∗, x− y⟩ s.t. gi(y) ≤ 0, i ∈ {1, . . . , n}

}
.

The following theorem provides a connection between the value of the
gap function at (x0, x

∗
0) and the optimality of x0.

Theorem 2.4. (i): ϕ(x, x∗) ≥ 0 for each x ∈ C and x∗ ∈ ∂<f(x).
(ii): If ϕ(x0, x

∗
0) = 0 for some x0 ∈ C and x∗

0 ∈ ∂<f(x0), then x0

is an optimal solution to (M).
(iii): Let x0 ∈ C be an optimal solution to (M). Under the

hypothesis of Theorem 2.1, one has ϕ(x0, x
∗
0) = 0 for some

x∗
0 ∈ ∂<f(x0).

References

1. G.Caristi, N.Kanzi,M.Soleimani-damaneh, On gap functions for nonsmooth mul-
tiobjective optimization problems, Optimization Letters.,(2017)1-14

2. M.Goberna,N.Kanzi,M.Soleimani-damaneh, Optimality conditions in convex
multiobjective SIP, Math. Program.164(2017) no. 1-2, Ser. A, 167–191

3. N.Kanzi,M.Soleimani-damaneh, Slater CQ, optimality and duality for quasicon-
vex semi-infinite optimization problems, J. Math.Anal.Appl.434(2016) no. 1,
638–651.

4. N.T.Linh, , J.P. Penot, : Optimality conditions for quasiconvex programming.
SIAM J. Optim. 17, 500-510 (1998).

5. J.P., Penot, : Are generalized derivatives useful for generalized convex func-
tions?. in Generalized Convexity, Generalized Monotonicity: Recent Results,
J.-P. Crouzeix, J. E. Martinez-Legaz, and M. Volle, (eds.), Kluwer, Dordrecht.
3-59 (1998).

67



The Extended Abstracts of

The 1st Seminar on Control and Optimization

11-12th October 2017, Ferdowsi University of Mashhad, Iran

AN INFEASIBLE INTERIOR POINT ALGORITHM
FOR LINEARLY CONSTRAINED CONVEX

OPTIMIZATION

SAJAD FATHI-HAFSHEJANI∗AND ALIREZA FAKHARZADEH J.

Faculty of Mathematics, Shiraz University of Technology,
P.O. Box 71555-313, Shiraz, Iran

s.fathi@sutech.ac.ir
a−fakharzadeh@sutech.ac.ir

Abstract. In this paper, an infeasible interior point algorithm for
solving linearly constrained convex optimization problems is pre-
sented. The new algorithm is performed on a wide neighborhood of
the central path and searches for the optimizers along the ellipses
that approximate the entire of the central path. We compute the
polynomial complexity of the proposed algorithm and show that
our algorithm has the best known iteration complexity bound.

1. Introduction

The linearly constrained convex optimization (LCCO) problems are
one of the fundamental problems in mathematical programming. The
standard form of the LCCO problems is given by:

(P ) min f(x)

s.t. : Ax = b, x ≥ 0,
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Key words and phrases. Complexity bound, Linearly constrained convex opti-
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where f : Rn → R is a convex and continuously differentiable function,
A ∈ Rm×n and b ∈ Rm. The wolf dual problem of (P ) is given by:

(D) max bTy + f(x)− xT∇f(x)

s.t. : ATy + s−∇f(x) = 0, s ≥ 0,

where ∇f(x) denotes the gradient vector of f(x).
In recent years, many researchers have attempted to find some meth-

ods which have the best results in solving related mathematical pro-
gramming problems. The class of Interior Point Methods (IPMs) is
one of these kind of methods which have many followers. This class
can be divided into two main categories: feasible and infeasible inte-
rior point methods. An important work with subject feasible IPMs
goes back to work proposed by Bai et al. [1]. They showed that their
algorithm for large and small-update methods have O(

√
n log n log n

ε
)

and O(
√
n log n log n

ε
) iteration complexity bounds. One other hand,

Roos [5] presented an interesting paper on infeasible area of the IPMs.
Also, to obtain efficient algorithms in infeasible area of IPMs, several
approach are suggested. For examples Yang [3] introduced the concept
of arc search IPMs that they are searching for optimizers along an el-
lipsoidal approximation of the central-path. To overcome underlying
problem of the Yangs algorithms, that is, the choice of an initial feasible
solution, Pirhaji [2] showed that an arc search infeasible interior-point
algorithm for linear complementarity problems which is well defined
and worked with an arbitrary initial point.

In this paper, an arc infeasible interior point algorithm for solving
LCCO problems is proposed. To analyze this new algorithm, we apply
the Ai-Zhangs neighborhood [4] and use the new idea proposed by Yang
[3] to obtain the search direction. Finally, we compute the worst case
iteration complexity bound for the new proposed algorithm.

2. Central-path

Throughout this paper, without loss of generality, we have the fol-
lowing assumption:

•: The matrix A is full rank i.e., rank(A) = m ≤ n;
•: f is convex and twice continuously differentiable function.

The second assumption implies that the hessian matrix ∇2f(x) of f is
positive semidefinite. Assuming an initial point (x0, y0, s0) and consid-
ering (xk, yk, sk) as a current iteration of the algorithm, we define the
following system:

Axk−b = rkp , ATyk−∇f(x)+sk−c = rkd , x(µ)s(µ) = µxksk. (2.1)
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An infeasible central path is defined as:

H := {(x(µ), y(µ), s(µ)) : (x(µ), y(µ), s(µ)) = a⃗ cos(α) + b⃗ sin(α) + c⃗}

where a⃗ ∈ R2n+m and b⃗ ∈ R2n+m are the axes of the ellipse and they
are perpendicular to each other, c⃗ ∈ R2n+m is the center of the ellipse.
Similar to [4], we define the following ℓ2-neighborhood of the central
path as below:

N (τ, β) := {(x, s) ∈ R2n
++ : ||(τµe− xs)+|| ≤ βτµ}. (2.2)

The next lemma presents our new point.

Lemma 2.1. Suppose that the new point generated by the above ap-
proach; thus this new point has the following formulate:

x(α) : = x− ẋ sin(α) + ẍ(1− cos(α));

y(α) : = y − ẏ sin(α) + ÿ(1− cos(α));

s(α) : = x− ẋ sin(α) + s̈(1− cos(α)),

where (ẋ, ẏ, ṡ) and (ẍ, ÿ, s̈) are computed via the following procedure.

(ẋ, ẏ, ṡ) = λ(ẋ1, ẏ1, ṡ1) + (1− λ)(ẋ2, ẏ2, ṡ2), (2.3)

where λ := max{λ ∈ [0, 1] : ẋT ṡ ≥ −1
4
(1 + βτ)nµ} and (ẋ1, ẏ1, ṡ1) and

(ẋ2, ẏ2, ṡ2) are obtained from:

Aẋ1 = rp, −Hẋ1 + AT ẏ1 + Iṡ1 = rd, Sẋ1 +Xṡ1 = rc;

Aẋ2 = 0, −Hẋ2 + AT ẏ2 + Iṡ2 = 0, Sẋ2 +Xṡ2 = rc,

where the vector rc is defined as: rc := −
[
(τµe− sx)− +

√
(τµe− xs)+

]
.

Moreover, (ẍ, ÿ, s̈) is obtained from the following system:

Aẍ = 0, −Hẍ+ AT ÿ + s̈ = 0, sẍ+ xs̈ = −2ẋṡ. (2.4)

3. Algorithm

In this section, we present an arc infeasible IPM algorithm for LCCO
problems.

Algorithm 1. Infeasible-IPM with arc-search for LCCO problems

Step 0
Fix some parameters θ ∈ (0, 1

2+
√
2
], ϵ > 0, τ ∈ (0, 1

4
]

initial point (x0, y0, s0) ∈ N (τ, β)
Step 1 If

||rkp || ≤ ε, ||rkd || ≤ ε (x, s) > 0,

stop. Otherwise go to Step 2.
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Step 2 By using (2.3) and (2.4), compute (ẋ, ẏ, ṡ) and (ẍ, ÿ, s̈).
Step 3 compute the largest positive α̂k ∈ (0, π

2
] such that for all

α ∈ (0, α̂k], the following inequality are true:

µ(α̂k) ≤ (1− sin(α)

2
)µk (3.1)

x(α)T s(α) ≥ (1− sin(α))xT
k sk (3.2)

(x(α), y(α), s(α)) ∈ N (τ, β) (3.3)

Step 4 Let the new iterate (xk+1, yk+1, sk+1) := (x(α̂k), y(α̂k), s(α̂k))

and compute µk+1 =
xT
k+1sk+1

n
. Set k := k + 1 and go to Step 1.

end

To obtain the complexity result of the algorithm, we first give two
technical lemma presented in [2].

Lemma 3.1. Suppose that sin(α̂) is the largest positive such that (3.1)
holds. Then, we have: sin(α̂) ≥ sin(α̂0) :=

βτ√
n
√
ω
.

Lemma 3.2. Suppose that sin(α̂0) =
βτ√
n
√
ω
. Then for all α such that

sin(α) ∈ [0, sin(α̂0)], we conclude that: (x(α), y(α), s(α)) ∈ N (τ, β).

Theorem 3.3. Suppose that sin(α̂0) =
βτ√
n
√
ω
and (x(α), y(α), s(α)) ∈

N (τ, β). Then, the total number of iterations to get an ε-solution of
problems (P) and (D), i.e., a solution that satisfies xT s = nµ ≤ ε, is
bounded by O(n log ε−1).

The numerical result and simulation the performing algorithm will be
presented in speech.
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Abstract. Variational problems can have piecewise smooth op-
timal solutions. This paper presents a numerical direct method,
based on the extension of the well-known Ritz method, for solving
variational problems with piecewise smooth solution.

1. Introduction

It is known that, the variational problem

min J [u] =

∫ t1

t0

F (t, u, u′)dt, u(t0) = u0, u(t1) = u1, (1.1)

can have optimal solution of the following form in the space of piecewise
smooth functions.

u∗(t) = { u∗
1(t), t0 ≤ t ≤ p∗,

u∗
2(t), p∗ ≤ t ≤ t1,

(1.2)

where u∗
1 and u∗

2 are smooth functions, u∗
1(p

∗) = u∗
2(p

∗) and the func-
tion F is supposed to be continuously differentiable with respect to its
arguments. The functional J is supposed to have a minimizing solution

2010 Mathematics Subject Classification. 49J40.
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of the form (1.2), on E[t0, t1], where

E[t0, t1] = {u(t) : u(t) is piecewise smooth, u(t0) = u0, u(t1) = u1}.
(1.3)

In this paper, by modifying the Ritz direct method [1, 2, 3, 4], we
present a method for finding approximate solutions of the form (1.2) for
(1.1). Our method is inspired by the extended Ritz method [5, 6, 7]. As
a direct method based on the discritization techniques, the interested
reader can refer to [8].

2. Extension of the Ritz method

Consider expansions

u1,k(t) := C1,k
T .Ψ1,k(t) + u0

and

u2,k(t) := C2,k
T .Ψ2,k(t) + u1,

Ψ1,k(t) := (ϕjt)0≤j≤k, Ψ2,k(t) := (ϕj(1− t))0≤j≤k, (2.1)

C1,k := (c1,j)0≤j≤k, C2,k := (c2,j)0≤j≤k,

uk(t) :=

{
u1,k(t), 0 ≤ t ≤ pk,
u2,k(t), pk ≤ t ≤ 1.

(2.2)

Here, ϕjs, j ∈ {0}
∪

N are polynomial basis functions and ci,js,
i = 1, 2, j = 0, 1, . . . , k and pk are real unknowns. By substituting uk

in (1.1), we achieve

J [pk, C1,k, C2,k] =

∫ pk

0

F (t, u1,k, u
′
1,k)dt+

∫ 1

pk

F (t, u2,k, u
′
2,k)dt. (2.3)

If ci,js and pk are determined by minimizing the function J with respect
to the constraint u1,k(pk) = u2,k(pk), then we achieve the function uk,
which approximates minimum value of J in (2.3) and also is in the
form of (1.2). The following theorem demonstrates the convergence of
the method.

Theorem 2.1. Let µ∗ = J [u∗] and also let µk = J [uk] , then

lim
k→∞

µk = µ∗.
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3. Quadratic variational problems

In this section, we focus on the following quadratic class of variational
problem (1.1)

J [u] =
1

2

∫ 1

0

B(U,U)dt−
∫ 1

0

L(U)dt+ C, (3.1)

where C is a real constant, U := (u, u′), and the mappings L : X →
L2[0, 1] and B : X × X → L2[0, 1] are considered to be linear and
bilinear respectively. Here, X := L2[0, 1] × L2[0, 1] is equipped with

the following product norm ∥(f1, f2)∥ := (∥f1∥L2
2 + ∥f2∥L2

2)
1
2 .

We also define mappings B̃ and L̃ as follows

B̃ : X ×X → R, (U, V ) 7→
∫ 1

0

B(U, V )dt,

L̃ : X → R, U 7→
∫ 1

0

L(U)dt.

The functional B̃ is supposed to have the following properties:
(i) Boundedness. There exists a constant d > 0 such that | B̃(U, V ) |≤

d ∥ U ∥∥ V ∥ .
(ii) Strong positivity. There exists c > 0 such that c ∥ U ∥2≤

B̃(U,U).
The mapping L̃ is supposed to be bounded.

Theorem 3.1. A necessary and sufficient condition for u∗ to be a
unique minimizer of the functional (3.1) over E[0, 1] is to satisfy the
following variational equality

B̃(U∗, V ) = L̃(V ), v ∈ E∗[0, 1], (3.2)

where U∗ = (u∗, u∗′), V = (v, v′),

E∗[0, 1] := {u(t) : u(t) is piecewise smooth, u(0) = u(1) = 0}. (3.3)

Now we present an approximate method for solving the variational
equality (3.2). Let Uk := (uk, uk

′), where uk is defined in (2.2). Also
let

Φ1,j(t) := { αj(t), 0 ≤ t ≤ pk,
0, pk < t ≤ 1,

Φ2,j(t) := { 0, 0 ≤ t < pk,
βj(t), pk ≤ t ≤ 1,

(3.4)
where αj(t) := tϕj(t) and βj(t) := (1− t)ϕj(t). Then

B̃(Uk, µi,j) = L̃(µi,j), 0 ≤ j ≤ k, i = 1, 2, (3.5)

µi,j := (Φi,j,Φi,j
′),

74



ALI LOTFI

forms a system of 2k+2 equations and 2k+3 unknowns. Note that, pk
is an unknown which should be determined. We rewrite system (3.5)
in the form (3.6)∫ pk

0

B(Uk, µi,j)dt+

∫ 1

pk

B(Uk, µi,j)dt =

∫ pk

0

L(µi,j)dt+

∫ 1

pk

L(µi,j)dt,

(3.6)
u1,k(pk) = u2,k(pk). (3.7)

By solving the system (3.6), (3.7), we achieve coefficients of expansion
(2.2) and pk. Now uk is an approximate minimizer for the functional
(3.1).

In Theorem 3.2, we show that with increase in values of k, the ap-
proximate solution uk tends to the exact solution u∗.

Theorem 3.2. Suppose uk is derived by solving the system (3.6), (3.7),
then

lim
k→∞

∥ uk − u∗ ∥L2= lim
k→∞

∥ u′
k − u∗′ ∥L2= 0.

4. Conclusions

A direct method to find approximate solutions for variational prob-
lems with piecewise smooth solutions is developed by extending the
well-known Ritz method. Although the discussed problem has optimal
solution containing a single corner point, the method can be naturally
generalized to the cases with multiple corner points.
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Abstract. Fuzzy linear regression models are used to obtain an
appropriate linear relation between a dependent variable and sev-
eral independent variables in a fuzzy environment. In this paper,
a neural network model is constructed on the basis of the duality
theory to find the approximate parameters. A numerical result
shows the performance of the method.

1. Introduction

Regression analysis is one of the most popular methods of estima-
tion. It is applied to evaluate the functional relationship between the
dependent and independent variables. Fuzzy regression analysis is an
extension of the classical regression analysis in which some elements
of the model are represented by fuzzy numbers [2]. In this paper,
we present a neural network [4] for solving the fuzzy linear regression
model. Finally, we estimate the parameters of a fuzzy regression model
and compare our estimation with those previously presented.
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Key words and phrases. Neural network, Fuzzy regression, Convex program-
ming, Fuzzy polynomial regression.
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2. Preliminaries

Definition 2.1. A fuzzy number is a fuzzy set u : R1 → [0, 1] such
that
i. u is upper semi-continuous;
ii. u(x) = 0 outside some interval [a, d];
iii.There are real numbers b and c, a ≤ b ≤ c ≤ d, for which
1. u(x) is monotonically increasing on [a, b],
2. u(x) is monotonically decreasing on [c, d],
3. u(x) = 1, b ≤ x ≤ c.

For 0 < h ≤ 1, a h-level set of a fuzzy number X is defined as
[X]h = {x ∈ R|µX(x) ≥ h}, and [X]0 =

∪
h∈(0,1][X]h. We denote [X]h

by [X]h =
[
[X]Lh , [X]Uh

]
.

A popular fuzzy number is the triangular fuzzy number u = (ul, um, ur)
where um denotes the modal value and the real values ul and ur repre-
sent the left and right points of the triangular fuzzy number.

Definition 2.2. Ametric d∗ is defined as d∗(X, Y ) = suph>0dH([X]h, [Y ]h),
where the Hausdorff metric dH is given by

dH(A,B) = max(supa∈Ainfb∈B||a− b||, supb∈Binfa∈A||a− b||). (2.1)

For two triangular fuzzy numbers u1 = (u1m, u1l, u1r) and u2 =
(u2m, u2l, u2r), (2.1) reduces to d(u1, u2), where [1]

d2(u1, u2) = (u1l − u2l)
2 + (u1m − u2m)

2 + (u1r − u2r)
2. (2.2)

3. The fuzzy polynomial regression model

We have postulated that the dependent fuzzy variable Y , is a func-
tion of the independent real variables x1, x2, ..., xn. More formally

f : Rn → E,

Yi = f(xi1, xi2, ..., xin),

where i indexes the observations. The objective is to estimate a fuzzy
polynomial regression (FPR) model, express as follows:

Y i = Al0+
n∑

j=1

Aljxij+
n∑

j=1

n∑
k=1

Aljkxijxik + ..., i = 1, 2, ...,m. (3.1)

This full form of mathematical description in Eq.(3.1) can be repre-
sented by a fuzzy polynomial consisting of only one variable in the
form of

Y i = A0 + A1xi + A2x
2
i + ...+ Anx

n
i , (3.2)
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when Y i = A0+A1xi. We might do it by eye-fitting the line that looks
best to us. Unfortunately, different people will draw different poly-
nomials and it would be nice to have a formal method for finding the
polynomial that would consistently provide us with the best polynomial
possible. What would a best possible polynomial look like? Intuitively,
it would seem to have to be a polynomial that fit the data well. That is,
the distance of the polynomial from the observations should be as small
as possible. Let A0, A1, ..., An denote the list of regression coefficients
(parameters). A0 is an optional intercept parameter and Al, ..., An are
weights or regression coefficients corresponding to xi. Then fuzzy poly-
nomial regression is given by

Y i = A0 + A1xi + A2x
2
i + ...+ Anx

n
i , (3.3)

where i indexes the different observations and A0, A1, ..., An are fuzzy
numbers. We are interested in finding A0, A1, ..., An of fuzzy polynomial
regression such that Y i approximates for all i = 1, 2, ...,m, closely
enough according to some norm ∥.∥, i.e.,

min
∥∥[Y i]

†
h − [Yi]

†
h

∥∥, h ∈ [0, 1], for all i = 1, 2, ...,m, (3.4)

where † means we have this equation for U (upper limit) and L (lower
limit) together, independently.

4. A neural network model

From previous section, we see that the fuzzy polynomial regression
model can be reduced to the following optimization problem

minimize f(x)

subject to g(x) ≤ 0. (4.1)

We propose the following recurrent neural network for solving (4.1) as

dx

dt
= −(∇f(x) +∇g(x)T (u+ g(x))+),

du

dt
= (u+ g(x))+ − u, (4.2)

Theorem 4.1. [4] The proposed neural network model in (4.2) is glob-
ally stable in the Lyapunov sense and is globally convergent.

5. A numerical example

Example 5.1. We now apply the proposed method to fit the fuzzy
linear regression model to the data taken from Hong and Hwang [3], as
shown in Table (1). By using (4.2), the fuzzy linear regression model
obtained by our method is as follows:
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yi = (5.2491, 4.8948, 4.5406) + (1.1383, 1.1954, 1.2524)xi

Table 1. The data and error in estimation for Example (5.1)

Obs. Res. Pre. Hong-Hwang Kao-Chyu NN

1 (-2.1, -1.6, -1.1) 1.0 2.0160 2.8875 0.9113
2 (-2.3, -1.8, -1.3) 3.0 2.0480 1.9324 0.7473
3 (-1.5, -1.0, -0.5) 4.0 3.1537 1.9943 1.0471
4 (0.7, 1.2, 1.7) 5.6 4.6965 1.9458 0.8928

5 (1.2, 2.2, 3.2) 7.8 3.4238 2.6143 1.7993
6 ( 5.8, 6.8, 7.8) 10.2 4.1836 1.4666 0.8685
7 ( 9.0, 10.0, 11.0) 11.0 4.8699 3.0077 1.9537
8 ( 9.0, 10.0, 11.0) 11.5 4.9699 2.4298 1.6401

9 ( 9.0, 10.0, 11.0) 12.7 5.4516 1.4254 0.5342

Total error 34.8130 19.7039 10.3944

The errors of the observations are shown in Table (5.1). We see that
the sum of errors in our method is considerably less than the other
methods.
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Figure 1. Transient behaviors of the neural network (4.2)
with a random initial point.
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Abstract. In this paper, the goal is to determine a bounded
shape located over the (x, y)-plane, such that its projection in the
(x, y)-plane and its volume are given and it minimizes some given
surface integral in spherical coordinates.To solve such a problem,
we somehow extend the embedding process in the space of Radon
measures. First, the problem is converted into an infinite dimen-
sional linear program. Then this problem is reduced to a finite
dimensional nonlinear program using approximation scheme. Fi-
nally, the solution of this new problem is used to construct a nearly
optimal smooth surface by applying a kind of outlier detection
method and MATLAB smooth curve fitting toolbox. In compar-
ison to the other methods, this approach has some advantages; a
numerical example is given to illustrate the proposed method and
its advantages.
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1. Introduction

In two recent decades, some authors have considered a general and
linear method based on an embedding process for solving OSD prob-
lems in two dimensions [2, 3]. But a huge number of problems are
based on three-dimensional; also, we know that spherical coordinates
has many remarkable advantages. Regarding these facts, in [1], for
the first time, an extended version of the shape-measure method in
spherical coordinates was presented. Now here, a modification on this
method will be extended for determining general 3-D optimal shape.
We suppose that the boundary of the general shape C is consistant
of two parts; the first is an unknown smooth surface S defined by
ϕ = f(ρ, θ) and the second is the given region D, the projection of S
in (x, y)-plane. Additionally D is surrounded by a simple and closed
curve ∂D, demonstrated by r = h(θ), 0 ≤ θ ≤ 2π and passes through
a given point B = (h(θ0),

π
2
, θ0).

2. Statement of the problem

We try to determine an admissible surface S which minimizes I(S) =∫
S
f0(ρ, ϕ, θ)dσ, where f0 is a given continuous (measurable) function

defined on S. To solve this problem, by applying embedding process,
we transform it to a classical optimal control problem; we consider
ϕ(ρ, θ) as a trajectory function and choosing artificial control functions
as u1 ≡ u1(ρ, θ) = fρ, u2 ≡ u2(ρ, θ) = fθ, u3 ≡ u3(ρ, θ) = fρθ. Thus,
we can convert the mentioned OSD problem as follows:

Min
P∈W

I(P ) =

∫∫
D

f1(ρ, ϕ, θ, u1, u2, u3)ρdρdθ

S.to :

∫∫
D

Φgρdρdθ = ρ0∆Φ, ∀Φ ∈ C ′(B);

∫∫
D

Ψρdρdθ = 0 , ∀ψ ∈ ℘(D◦);

∫∫
D

gρdρdθ = ag , ∀g ∈ C1(Ω); (2.1)

∫∫
D

(ρu1 − 1− θu2 cotϕ)ρ sinϕ

u2
ρdρdθ = 3V0;∫∫

D

(
∂K

∂ρ
− ∂K

∂ϕ
u1)ρdρdθ = 0 , ∀K(ϕ, θ) ∈ C1(D ×A);

∫∫
D

(
∂L

∂ρ
− ∂L

∂ϕ
u2)ρdρdθ = 0 , ∀L(ρ, ϕ) ∈ C1(D ×A);
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Here, the first, second and third constraints are similar to [4]. The
fourth constraint indicates volume of C and the two last constraints are
given to show the dependency of controls. Now, we can express (2.1)
in measure space by defining the following positive linear functional:

ΛP : F ∈ C(Ω) →
∫∫
D

F (ρ, ϕ, θ, u1, u2, u3)ρdρdθ.

Then we follow Rubio in [4] to approximate the solution of (2.1) with
a following nonlinear programming problem by using Riesz representa-
tion theorem, atomic measures and approximation scheme:

Min

M∑
j=1

αjf1(q
∗
j )

S. to :
M∑
j=1

αjΦ
g
i (q

∗
j ) = ρ0∆Φi

, i = 1, 2, ..., M1;

M∑
j=1

αjΨh(q
∗
j ) = 0 , h = 1, 2, ...,M2 ;

M∑
j=1

αjgsk(q
∗
j ) = agsk , s = 1, 2, ..., R1, k = 1, 2, ..., R2 ; (2.2)

M∑
j=1

αj
(ρu1 − 1− θu2 cotϕ)ρ sinϕ

u2

(q∗j ) = 3V0 ;

M∑
j=1

αjH1m(q
∗
j ) = 0 , m = 1, 2, ...,M4 ;

M∑
j=1

αjH2l(q
∗
j ) = 0 , l = 1, 2, ...,M5 ;

αj ≥ 0 , j = 1, 2, ...,M,

where M = M1 +M2 + (R1 ×R2) +M4 +M5 + 1.

3. Optimization algorithm

To have a good approximation, it is necessary thatM1,M2R1, R2,M4,M5

are selected large enough; thus, the nonlinear problem (2.2) is a large
scale problem and metaheuristic algorithms can be suitable enough to
solve it. Among them, we apply PSO; then, the procedure to construct
a piecewise constant optimal control and trajectory functions from the
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solution of (2.2), can be done based on the analysis in [4].
Example: We incline to determine an unknown symmetric three-
dimensional bounded shape with minimum surface area that is with
volume 32π

3
where D, is a circle by radius 2. Provided that there is also

a given point on the boundary of the region D as (2, π
2
, 0) = (2, π

2
, 2π).

We choose U1 = U2 = U3 = [−5, 5], M1 = 4, M2 = 9, R1 = 3, R2 = 6
and M4 = M5 = 1. After solving the related NLP by PSO, we ob-
tain the optimal points. Then, we reject the outliers with appropriate
method and fit a surface on remainder points (Fig.1).
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Figure 1. The nearly optimal surface

4. Conclusion

We have extended an extended embedding method (embedding in
Radon measures spaces) for spherical coordinates to be able to solve
3-D shape optimization problems. In this new method, the nearly op-
timal shape can be determined, with one step less in approximation,
from the solution of the corresponding simple finite dimensional non-
linear programming problem, instead of finite linear programming. By
this method, a smoother shape can be determined, since it is able to
employ a suitable algorithm for rejecting the outlier data.
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Abstract. This paper aims to plan a backstepping feedback con-
troller for a class of coupled parabolic partial differential equations
with different non-constant diffusions. We design a backstepping
controller which guarantees the stability of the system. Also, the
numerical simulation are presented.

1. Introduction

There are numerous industrials systems demonstrated by coupled
parabolic partial differential equations (PDEs) systems. In [1] the au-
thors utilized backstepping approach to stabilize a set of coupled PDEs
with constant diffusion coefficients. A new way based on backstepping
design is presented by [2]. In [3] the authors represented a backestep-
ping method for one dimensional parabolic cases with space dependent
diffusivity and time varying condition. In this paper, we design a back-
stepping feedback controller for stabilization of coupled parabolic PDEs
with nonconstant diffusion coefficients by utilizing boundary control.
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2. Problem statement

Consider a set of systems by n coupled parabolic PDEs with non-
constant diffusions with Neumann kind boundary conditions:

Ut(x, t) = Θ(x)Uxx(x, t) + ΨU(x, t), (2.1)

Ux(x, t) = 0, (2.2)

U(1, t) = Uc(t). (2.3)

The state vector is, U(x, t) = (u1(x, t), u2(x, t), . . . , un(x, t)) ∈ (L2(0, 1))n.
The input vector is Uc(1, t) = (uc1(1, t), uc2(1, t), . . . , ucn(1, t)) ∈ (L2(0, 1))n.
Θ(x) is a positive diagonal n × n matrix, whose components θi(x) for
i ∈ Nn, represent non-constant diffusions of the system, and Ψ is di-
agonal n × n matrix, whose components ψi for i ∈ Nn, display the
reaction term, and n ∈ N is the number of coupled PDEs.

3. Backstepping controller design

The systems (2.1)-(2.3) is unstable. For designing stable controller,
we introduce the following backstepping transformation.

W (x, t) = U(x, t)−
∫ x

0
K(x, y)U(y, t)dy, (3.1)

We apply (3.1) to transfer (2.1)-(2.3) into following stable target sytem:

Wt(x, t) = Θ(x)Wxx(x, t)− CW (x, t), (3.2)

Wx(x, t) = 0, (3.3)

W (1, t) = 0, (3.4)

where C is diagonal matrix parameter with components ci, i ∈ Nn. The
boundary condition (3.1) yields the feedback controller in the form:

U(1, t) =

∫ 1

0

K(1, y)U(y, t)dy. (3.5)

It is assumed that K(x, y) = ki(x, y)In×n. The following lemma estab-
lishes a condition that guarantees stability of the system (3.2)-(3.4).

Lemma 3.1. ([3]). System (3.2)-(3.4) is exponentially stable with the
following condition

ci ≥
θ
′′
imax

2
, where θ

′′

imax =max θ
′′

i (x), x ∈ [0, 1], i ∈ Nn. (3.6)

By applying (3.1) and replacing it in (2.1)-(2.3) and (3.2)-(3.4) we
have:

θi(x)kixx(x, y)− (θi(y)ki(x, y))yy = (ψi + ci)ki(x, y), i ∈ Nn, (3.7)
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and kiy(x, 0) = −θ
′
i(0)

θi(0)
ki(x, 0), i ∈ Nn, (3.8)

ki(x, x) = − 1

2
√
θi(x)

∫ x

0

ψi + ci√
θi(τ)

dτ. (3.9)

By considering

k̂i(xi, yi) = θi(y)ki(x, y), xi = ϕi(x), yi = ϕi(y),

ϕi(x) =
√
θi(0)

∫ x

0

1√
θi(τ)

dτ, (3.10)

ki(xi, yi) = (θi(x)θi(y))
−1

4 k̂i(xi, yi), (3.11)

the PDE (3.7)-(3.9), becomes:

θi(0)(kix̄ix̄i
(xi, yi)− kiȳiȳi(xi, yi)) =

(
3

16
(
θ
′
i(x)

2

θi(x)
− θ

′
i(y)

2

θi(y)
) +

1

4
(θ

′′

i (y)− θ
′′

i (x)) + (ψi + ci))ki(xi, yi), (3.12)

ki(xi, 0) = 0, (3.13)

ki(xi, xi) = −(ψi + ci)

2
√
θi(0)

xi. (3.14)

By solving ODEs, 3
16
(
θ
′
i(x)

2

θi(x)
− 1

4
θ
′′
i (x)) = c1i, Eq. (3.12) can be derived:

θi(0)(kix̄ix̄i
(xi, yi)− kiȳiȳi(xi, yi)) = ((ψi + ci))ki(xi, yi),

and θi(x) = ε0i(1 + ε1i(x − x0i)
2)2, where ε0i, ε1i, x0i, are arbitrary

constants, and c1i = −ε0iε1i. The PDEs (3.12)-(3.14) can be solved
(for detail, please see [2]):

ki(xi, yi) = −yi
(ψi + ci)√

θi(0)

I1(

√
ψi + ci
θi(0)

(xi2 − yi2))√
ψi + ci
θi(0)

(xi2 − yi2)

, (3.15)

where I1 is a modified Bessel function of order one. By transformation
ki(xi, yi) = (θi(x)θi(y))

−1
4 θi(y)ki(x, y), Eq. (3.15) can be derived:

ki(x, y) = −θi(x)
1

4

θi(y)
3

4

(ψi + ci)√
θi(0)

yi

I1(

√
ψi + ci
θi(0)

(xi2 − yi2))√
ψi + ci
θi(0)

(xi2 − iy2)

, (3.16)

xi = ϕi(x), yi = ϕi(y), (3.17)

ϕi(ξ) =
1 + ε1ix

2
0i√

ε1i
(arctan(

√
ε1i(ξ − x0i)) + arctan(

√
ε1ix0i)). (3.18)
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Example 3.2. Consider the following parabolic PDEs systems:

u1t(x, t) =
1

4
((1 + (x− 1

2
)2))2u1xx(x, t) + 0.85u1(x, t), (3.19)

u2t(x, t) =
1

2
((1 + (x− 1

4
)2))2u2xx(x, t) + 1.705u2(x, t), (3.20)

u1x(0, t) = 0, (3.21)

u2x(0, t) = 0, (3.22)

u1(1, t) = 5sin(t), (3.23)

u2(1, t) = 10sin(2t), (3.24)

u1(x, 0) = u2(x, 0) = sin(πx) + sin(3πx). (3.25)

The control of the system (3.19)-(3.25) will be designed by applying
approach in Section (3) and lemma (3.1). For simulating, the Matlab
software is applied.

Figure 1. The graph of openloop (top) and closeloop (bottom) u1 and u2.
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Abstract. In this paper, we introduce a new method for solving
initial value problems and show how to obtained approximate so-
lution for initial value problem is found by ALSSVM prescription.
This process is suitable for solving differential equations with ini-
tial value conditions. Some numerical simulations are illustrated
to show the proposed method.

1. Introduction

The ordinary differential equations (ODEs) plays an important role
in engineering, medical sciences and medicine. Often, ODEs construct
to modeling of phisycal phenomenas. There are many algorithms for
solving ODEs( [2]-[4]). The Support Vector Machines are set of learning
machine methods used for solving problems in Classification, Regres-
sion and Detection consists of classifier algorithms based on Statistical
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Key words and phrases. Support vector machine; Initial Value Problem; Asym-
metric Least Squares Support Vector Machines.
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Learning Theory. Also, ALSSVM algorithm is an excellent tool for
binary data classification[1]. In this paper, we ALSSVM algorithm for
earn approximation solution of ODEs.

2. ALSSVM method

Consider a data set z = {(xi, yi)}mi=1, where xi ∈ Rd and yi ∈
{−1,+1}. Now, we consider the following pinball loss:

Lpin
p (t) =

{
pt if t ≥ 0
−(1− p)t if t < 0

Which is related to the p lower value and 0 ≤ p ≤ 1 [1]. We can
maximize the quantile distance by following pinball loss SVM proposed
by Huang et al. [4]:

min
1

2
∥w∥2 + C

2

m∑
i=1

Lpin
p (1− yi(w.ϕ(xi) + b))

Then, expectile regression minimizes the following squared pinball loss:

Lals
p (t) =

{
pt2 if t ≥ 0
(1− p)t2 if t < 0

The expectile distance between two sets can be maximized by the fol-
lowing ALSSVM:

min
1

2
∥w∥2 + C

2

m∑
i=1

Lals
p (ξi)

s.t. 1− yi(w.ϕ(xi) + b) = ξi, i = 1, 2, . . . ,m (2.1)

where ϕ(x) is feature map. Then, Dual of (2.1) is written as

min
1

2

m∑
i=1

m∑
j=1

λiλjyiyjK(xi, xj) +
1

2Cp

m∑
i=1

(
λi +

1

1− p
βi

)2

s.t.

m∑
i=1

λiyi = 0, (2.2)

λi + βi ≥ 0, βi ≥ 0, i = 1, 2, . . . ,m

And the bias term b is computed according to

yi

( m∑
j=1

yjλjK(xi, xj) + b

)
= 1− 1

p
ξi,∀i : αi ≥ 0

yi

( m∑
j=1

yjλjK(xi, xj) + b

)
= 1 +

1

1− p
ξi,∀i : βi ≥ 0
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3. Solving m-th order initial value problem by using
ALSSVM model

A m-th order initial value problem the following are introduced as:

y(m)(t)−
m∑
i=1

fi(t)y
(m−i)(t) = r(t)

y(a) = p1, y(i−1)(a) = pi, i = 1, 2, . . . ,m t ∈ [a, c] (3.1)

Now, we uses the mentioned algorithm for solving m-th order linear
ordinary differential equations and approximates them solution. Let us
assume that a general approximate solution to (3.1) is of the form of
ȳ(t) = w.ϕ(t)+b, where w and b are unknowns; And we should specifies
of them. Therefore, to obtain the optimal value of these parameters,
we assume a discretization of the interval [a, c] into a set of collocation
points ∆ = {a = t1 ≤ t2 ≤ t3 ≤ . . . ≤ tN = c}.
In order to, by combining ALSSVM framework model cost function
with constraints constructed by imposing the approximate solution for
equation of (3.1) the following form constructed:

min
1

2
∥w∥2 + C

2

N∑
i=2

ξ2i

s.t. w.

(
ϕ(m)(ti)−

m∑
k=1

fk(ti)ϕ
(m−k)(ti)

)
−fm(ti)b− r(ti) ≤

ξi
p
, i = 2, 3, . . . , N

− w.

(
ϕm(ti)−

m∑
k=1

fk(ti)ϕ
(m−k)(ti)

)
+fm(ti)b+ r(ti) ≤

ξi
1− p

, i = 2, 3, . . . , N

(3.2)

w.ϕ(t1) + b = p1

w.ϕ(i−1)(t1) = pi, i = 2, 3, . . . ,m

the dual of (3.2) is reformed in the following matrix form:

min
1

2
XTHX + FX

s.t. DX = 0,

AX ≤ 0

The obtained approximation solution is as follows,

ŷ(t) =
N∑
i=2

λi

(
[∇0

mK](ti, t)−
m∑
k=1

fk(ti)[∇0
m−kK](ti, t)

)
+

m∑
j=1

γj[∇0
j−1K](t1, t) + b
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4. Numerical results

Example 4.1. Consider the following second order IVP:

y′′(t) +
1

5
ty′(t) + y(t) =

−1

5
exp(− t

5
) cos(t), y(0) = 0, y′(0) = 1, t ∈ [0, 4]

Figure 1. Numerical solutions with N = 25, 50 and 100
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Abstract. The Accelerated Over-Relaxation (AOR) iterative method
is an iterative method for solving linear systems based on some pa-
rameters. Recently, some methods have been presented to optimize
two of these parameters, to obtain better solution with lower time
consumption. In this paper, by applying Taylor approximation, an
exact optimization technique is proposed to find the optimal values
of the parameters of the AOR iteration, and also to minimize the
2-norm of the residual vector. Meanwhile, numerical results show
the efficiency of the presented optimal technique in contrast to the
normal AOR iterative method.

1. Introduction

Lately, the iterative solvers of a large sparse linear system

Ax = b (1.1)
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has been regarded in many scientific computing and engineering prob-
lems, where the coefficient matrix A ∈ Rn×n is a nonsingular matrix,
b ∈ Rn is a given right-hand vector and x ∈ Rn is an unknown vector.
The accelerated overrelaxation (AOR) method, which has been verified
to be a potent device for solving the linear system of equations (1.1),
was offered firstly by Hadjidimos [1]. In particular, he displayed that
when the two parameters are easily achieved the method converges
faster than the other methods of the same type. Therefore, the gravity
about the determination of the optimal acceleration and overrelaxation
parameters has to be further perused. In addition, analytic formulas
for optimal parameters were also presented by Hadjidimos [1, 3]. Thus,
usages of the AORmethod to widespread real problems are seriously re-
stricted. The asymptotically optimal successive overrelaxation method
of opting the optimal factor in a dynamic fashion according to known
information at the current iterate step, was drafted by Bai and Chi
[4]. Based on the mentioned facts, an optimization technique relating
to choosing the optimal parameters is put forward. In [2], the optimal
parameters ω and γ are computed by solving a lower-order nonlinear
system that is determined by the residual vector and the coefficient
matrix A. Furthermore, the optimal parameters are selected by the
Newton iterative method instead of specific analytic formulas in [1, 3].
recently, Shi and Yu presented a new version of the AOR method [5].
Based on the AOR idea, in this study, we apply an exact optimiza-
tion technique to present a new iterative method for solving (1.1); this
method is more stable and effective than the method presented in [2].
In following, we briefly review the AOR method and its properties.

1.1. AOR method and its attributes. For solving (1.1), Hadjidi-
mos [1] proposed the following splitting method with two parameters
for the coefficient matrix A as A = Mγ,ω −Nγ,ω where

Mγ,ω =
1

ω
(AD − γAL), Nγ,ω =

1

ω
[(1− ω)AD + (ω − γ)AL + ωAu],

(1.2)

where γ, ω ̸= 0, AD is the diagonal part of A, and −AL and −Au

are strictly lower and strictly upper triangular parts of A, respectively.
The iteration format of AOR method for solving the linear system (1.1)
is

xp+1 = ℓγ,ωx
p + gγ,ω, (1.3)

where

ℓγ,ω = (AD − γAL)
−1[(1− ω)AD + (ω − γ)AL + ωAu];
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gγ,ω = ω(AD − γAL)
−1b.

We apperceive the particular values of the parameters γ and ω in [1]
when the AOR method can be simplified into
• the Jacobi method if ω = 0, γ = 1;
• the Simultaneous Overrelaxation method if γ = 0;
• the Gauss-Seidel method if ω = 1, γ = 1;
• the Successive Overrelaxation method if ω=γ.

More precisely, by scrutiny we have the following conclusion.

Theorem 1.1. (Theorem 4.4 of [3]) Let A be a nonsingular matrix
with nonzero diagonal entries. Then {xp}∞p=0 in (1.3) generated by the
AOR method, converges to the unique solution x∗ of the linear system
(1.1) if A is a real symmetric positive definite matrix, 0 < γ < 2 and
0 < ω < 2γ

1+ρ(ℓγ,γ)
where ρ is the sprctral radius of the iteration matrix.

2. Modified optimized Taylor AOR iterative method

Recently, AOR method has been modified by using an optimization
technique. Since (AD − γAL)

−1 = (I − γL)−1A−1
D with L = A−1

D AL is a
strictly lower triangular matrix, Ln = 0 (the zero matrix) and ρ(γL) <
1; also (I−γL)−1 can be written in the form of Taylor expansion. Then

(I − γL)−1 =
n−1∑
k=0

(γL)k and thus M−1
γ,ω can be expressed as

M−1
γ,ω = ω(AD − γAL)

−1 = ω(I − γL)−1A−1
D = ω

n−1∑
k=0

(γL)kA−1
D . (2.1)

Obviously, M−1
γ,ω can be approximated by a lower-order truncation of

the matrix series on the right-hand side of (2.1). Generally,

M−1
γ,ω = ω(I + αγL+ β2γ2L2)A−1

D , (2.2)

where α and β are two real parameters used in Taylor expansion of γL.
Let ϵp denote the error vector of this modified AOR method at the pth
iterate step, that is, ϵp = xp − x∗ and let Hγ,ω = AM−1

γ,ω − L. So we
have

Hγ,ω = AM−1
γ,ω − I ≃ ωA(I + αγL+ β2γ2L2)A−1

D − I. (2.3)

Then we have the following theorem:
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Theorem 2.1. If A is a symmetric positive definite matrix, then

∥ϵp+1∥2A = (rp)THT
γ,ωA

−1Hγ,ωr
p

≃ (rp)T (A−1
D (I + αγL+ β2γ2L2)TAω

− I)(ω(I + αγL+ β2γ2L2)A−1
D − A−1)rp.

Proof.

∥ϵp+1∥2A = (ϵp+1, Aϵp+1) = (ϵp +M−1
γ,ωr

p, Aϵp + AM−1
γ,ωr

p)

= (A−1(−rp + AM−1
γ,ωr

p),−rp + AM−1
γ,ωr

p)

= (A−1Hγ,ωr
p, Hγ,ωr

p)

= (rp)THT
γ,ωA

−1Hγ,ωr
p.

□

3. Main results

Using the results of Theorem 2.1 and relations (2.2) and (2.3), the
following algorithm is proposed for solving iteratively (1.1). We re-
mind that Theorem 1.1 guarantees the convergence of this algorithm
for 2 > ω ≥ γ > 0.
Proposed Algorithm
S0. Given an initial vector x0 ∈ Rn, a precision ϵ1, for k = 0, 1, 2, ...:
S1. Compute rk = b− Axk.
S2. Solve min

2>ω≥γ>0
∥ϵp+1∥A by trust region method for obtaining γk, ωk, αk, βk.

S3. Compute xk+1 = xk + ω(I + αγL+ β2γ2L2)A−1
D rk.

Due to lack of space, numerical results will be expressed in the oral
speech
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Abstract. In this paper, the operational matrix of triangular
functions (TFs) for fractional order integration in the Caputo sense
are applied to approximate the solutions of fractional optimal con-
trol of linear systems, which have a quadratic performance index.
The necessary optimality conditions are stated in the form of frac-
tional two-point boundary value problem, then this problem is con-
verted to a coupled Volterra integral equations.

1. Introduction

Fractional optimal control problem (FOCP) is an optimal control
problem in which the objective functional or the differential equations
governing the dynamics of the system, contain at least one fractional
derivative term. Agrawal proved a version of Euler-Lagrange equa-
tions for fractional problems of the calculus of variations in the sense
of Caputo [1]. Also, after imposing the Pontryagin’s minimum princi-
ple (PMP) to the considered FOCP, we obtain a fractional two-point
boundary value problem [4]. In this paper, we consider the following
fractional linear optimal control problem (FLOCP)

Min J =
1

2

∫ 1

0

(xTPx+ 2xTQu+ uTRu)dt

s.t.{
0D

α
t x(t) = Ax(t) +Bu(t),

x(0) = x0,

(1.1)
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where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rm×n and 0D
α
t stands for the

α-th left Caputo fractional derivative with 0 < α ≤ 1. When α = 1,
the above problem is converted to the standard linear optimal control
problem. The control u(t) is an admissible control if it is piecewise
continuous in t for t ∈ [0, 1]. Its values belong to a given closed subset
U of R+. The input control u(t) is derived by minimizing the quadratic
performance index J , where P ∈ Rn×n and Q ∈ Rn×m are positive
semi-definite matrices and R ∈ Rm×m is positive definite matrix.

2. Optimality conditions

We consider Hamiltonian for system (1.1) as [3]

H(x, u, λ, t) =
1

2
(xTPx+2xTQu+ uTRu)+λT (Ax(t)+Bu(t)), (2.1)

where λ ∈ Rn is co-state vector. According to the Pontryagin’s mini-
mum principle, we have 0D

α
t x(t) =

∂H
∂λ

= Ax(t) +Bu(t); x(0) = x0,

tD
α
1λ(t) =

∂H
∂x

= Px+Qu+ ATλ; λ(1) = 0,
∂H
∂u

= 0,
(2.2)

where the operator tD
α
1 indicates the right Caputo fractional derivative

of order α. From the assumption ∂H
∂u

= 0, the exact optimal control is
computed as:

u∗ = −R−1QTx−R−1BTλ. (2.3)

Substituting (2.3) into (2.2) and taking the operators 0I
α
t and tI

α
1 from

these equations, respectively, we obtain the following system x(t) = x0 + 0I
α
t

(
(A−BR1QT )x(t)− (BR−1BT )λ(t)

)
,

λ(t) = λ1 + tI
α
1

(
(P −QR−1QT )x(t) + (−QR−1B + AT )λ(t)

)
.

(2.4)

3. Fractional operational matrices

Now we construct operational matrices of TFs for the right and left
Riemann-Liouville fractional integrals of order α [2]. For the right
fractional integration of the function T1i(t); i = 0, 1, · · · ,m − 1, we
have

tI
α
1 T1i(t) =


− (ih−t)α((α+i+1)h−t)−((i+1)h−t)α+1

hΓ(α+2)
, 0 ≤ t ≤ ih,

((i+1)h−t)α+1

hΓ(α+2)
, ih ≤ t ≤ (i+ 1)h,

0, t ≥ (i+ 1)h.

(3.1)
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Also, the right fractional integration of the function T2i(t) is

tI
α
1 T2i(t) =


((i+1)h−t)α(α−i+t)h+(ih−t)α+1

hΓ(α+2)
, 0 ≤ t ≤ ih,

((α−i)h+t)((i+1)h−t)α

hΓ(α+2)
, ih ≤ t ≤ (i+ 1)h,

0, t ≥ (i+ 1)h.

(3.2)

Expansion of tI
α
1 T1i(t) with respect to TFs is:

tI
α
1 T1i(t) ≃ [ci0, · · · , cim−1]T1(t) + [di0, · · · , dim−1]T2(t),

where cij = tI
α
1 T1i(jh) and dij = tI

α
1 T1i((j+1)h), i, j = 0, 1, · · · ,m−1.

From Eq. (2.4), we get
cij = 0; j ≥ i+ 1

cij =
hα

Γ(α+2)

(
(i− j + 1)α+1 − (i− j)α(α + 1)− (i− j)α+1

)
; j ≤ i

dij = cij+1.

Finally, for i, j = 0, 1, · · · ,m− 1, we can write:

tI
α
1 T1(t) ≃ R1αT1(t) +R2αT2(t), (3.3)

where R1α and R2α can be computed as

R1α =


ζ0 0 0 · · · 0
ζ1 ζ0 0 · · · 0
ζ2 ζ1 ζ0 · · · 0
...

...
...

. . .
...

ζm−1 ζm−2 ζm−3 · · · ζ0

 , R2α =


0 0 0 · · · 0
ζ0 0 0 · · · 0
ζ1 ζ0 0 · · · 0
...

...
...

. . .
...

ζm−2 ζm−3 ζm−4 · · · 0

 ,

where ζr =
hα

Γ(α+2)

(
(r+1)α+1−rα(α+1)−(r)α+1

)
, r = 0, 1, · · · ,m−1.

In a similar manner, the following approximation can be achieved
for T2(t),

tI
α
1 T2i(t) ≃ R3αT1(t) +R4αT2(t), (3.4)

where R3α and R4α are as

R3α =


ξ0 0 0 · · · 0
ξ1 ξ0 0 · · · 0
ξ2 ξ1 ξ0 · · · 0
...

...
...

. . .
...

ξm−1 ξm−2 ξm−3 · · · ξ0

 , R4α =


0 0 0 · · · 0
ξ0 0 0 · · · 0
ξ1 ξ0 0 · · · 0
...

...
...

. . .
...

ξm−2 ξm−3 ξm−4 · · · 0

 ,

in which ξr =
hα

Γ(α+2)

(
rα+1+α(r−1)α−r(r−1)α

)
, r = 0, 1, · · · ,m−1.
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By using Eqs. (3.3) and (3.4), right fractional integration of T (t)
can be computed as:

tI
α
1 T (t) =

(
tI

α
1 T1(t)

tI
α
1 T2(t)

)
≃

(
R1αT1(t) +R2αT2(t)
R3αT1(t) +R4αT2(t)

)
=

(
R1α R2α
R3α R4α

)(
T1(t)
T2(t)

)
= RαT (t).

(3.5)

Therefore, the right fractional integration of the arbitrary function f(t)
can be approximated as:

tI
α
1 f(t) ≃ F TRαT (t).

In a similar fashion, we can compute the left fractional integration
operational matrix, denoted Lα, of the function T (t). Therefore, for
any arbitrary function f(t), the left fractional integration can be ap-
proximated as:

0I
α
t f(t) ≃ F TLαT (t).

In reference [2], the left fractional matrix Lα is given.

4. Approximation method

Consider the weakly singular system (2.4). Expanding the functions
x(t) and λ(t) with respect to TFs, and applying the left and right
operational matrices, we get the following system:{

X0 + (A−BR−1QT )XLα −X − (BR−1BT )ΛLα = 0
Λ1 + (P −QR−1QT )XRα + (−QR−1B + AT )ΛRα − Λ = 0.

After solving the above linear matrix system in terms of the unknown
coefficients of the vectors X and Λ, the state function xm(t) and the
optimal control um(t) will be obtained.
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Abstract. This article describes contraction theory for the case
of discrete-time fractional order systems. The proposed approach
is useful for analyzing the stability of nonlinear and discrete-time
fractional order systems. Furthermore, it leads to a significant
conceptual simplification.

1. Introduction

Stability analysis has been applied to particular classes of fractional
order systems [1], but it still lacks generality. In this paper, a new
result is derived using elementary tools from continuum mechanics and
differential geometry, leading to a theory which is called contraction
analysis. Intuitively, contraction analysis is based on a slightly differ-
ent view of what stability is, and it is motivated by the elementary
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Key words and phrases. Contraction Theory, Discrete-time Fractional Order Sys-
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remark that talking about stability does not require to know what the
nominal motion is. Intuitively, a system is stable in some region if
initial conditions or temporary disturbances are somehow ”forgotten”,
i.e., if the final behavior of the system is independent of the initial con-
ditions [2, 4, 5]. All trajectories then converge to the nominal motion.

In this article we describe Contraction Theory for the case of discrete-
time fractional order systems (DFOS).

Consider the following integer order discrete-time system:

x (k+1)= f(x(k)) (1.1)

where f(·) is a smooth nonlinear vector function. A general DFOS can
be represented as follows, which for more details the reader is referred
to [3]:

x (k+1)= f (x (k))+ (α− 1) x (k) +
L∑

p=1

Cpx(k − p) (1.2)

where Cp = (−1)p
(

α
p+1

)
.

2. Main results

Theorem 2.1. Exponential convergence of system (1.2) is guaranteed
if

∂gk
∂x (k)

T ∂gk
∂x (k)

− I (2.1)

be uniformly negative definite, where

gk= f (x (k))+ (α−1) x (k)+
L∑

p=1

Cpx(k−p) . (2.2)

Proof. The associated virtual dynamics of (1.2) is

δx (k+1)=
∂gk

∂x (k)
δx (k) (2.3)

so that the virtual length dynamics is

δxT (k+1) δx (k+1) = δxT (k)
∂gk

∂x (k)

T ∂gk
∂x (k)

δx (k) , (2.4)

therefore, the rate of change of the left hand side is

δxT (k+1) δx (k+1)− δxT (k) δx (k)

= δxT (k)
∂gk

∂x (k)

T ∂gk
∂x (k)

δx (k)− δxT (k) δx (k)
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= δxT (k)

[
∂gk

∂x (k)

T ∂gk
∂x (k)

−I

]
δx (k)

thus, exponential convergence to a single trajectory is guaranteed if

∂gk
∂x (k)

T ∂gk
∂x (k)

− I (2.5)

be uniformly negative definite. □
Corollary 2.2. For the linear DFOS

x (k+1)= Ax (k)+ (α− 1) x (k) +
L∑

p=1

Cpx(k − p) (2.6)

exponential convergence to a single trajectory is guaranteed if BTB− I
be uniformly negative definite, where B = A+ (α− 1) I .

Proof. We have ∂gk
∂x(k)

=A+ (α−1) I, which concludes the proof. □

Using the generalized virtual displacement

δz (k) = Θk (x (k) , k) δx (k) (2.7)

obtained from an invertible coordinate tranformation Θ and by relation
(2.3) we have:

δzT (k+1) δz (k+1) = δxT (k)
∂gk

∂x (k)

T

ΘT
k+1Θk+1

∂gk
∂x (k)

δx (k)

= δzT (k)F T
k Fkδz (k) (2.8)

where

Fk = Θk+1
∂gk

∂x (k)
Θ−1

k (2.9)

is the discrete-time fractional order generalized Jacobian. Now, we can
give the following generalized definition of contraction region for DFOS.

Definition 2.3. Given the DFOS x (k+1)=gk (x (k)), with gk given
in (2.2), a region of the state space is called a contraction region with
respect to a uniformly positive definite metric Mk (x (k) , k) = ΘT

kΘk if
in that region

∃β > 0 , F T
k Fk − I ≤ −βI < 0

where Fk = Θk+1
∂gk
∂x(k)

Θ−1
k .

Example 2.4. Consider the Logistic DFOS [3]:

x (k+1)=µx (k) (1− x (k))+ (α− 1) x (k) +
L∑

p=1

Cpx (k − p).

102



RUZITALAB, FARAHI, AND ERJAEE

Figure 1. Convergence of Logistic DFOS for three ar-
bitrary initial points 0.2, 0.5 and 0.7.

The fixed (equilibrium) point will be x∗=
2−µ−α±

√
(µ+α−2)2+4µc

−2µ
where

c =
∑L

p=1Cpx(k − p). Let

gk=µx(k)(1− x(k))+ (α−1) x (k)+
L∑

p=1

Cpx(k−p)

therefore, ∂gk
∂x(k)

=µ+α−1− 2µx (k) and the fractional order discrete-

time Logistic system will be convergent if ∂gk
∂x(k)

T ∂gk
∂x(k)

− I < 0 . Numer-

ically, choosing α = 0.4, µ = 2 and L = 50, the fixed point will be

x∗ = 0.4228 and ( ∂gk
∂x(k)

)
2 − 1 = −0.9151< 0, therefore, the system will

be converge to x = 0.4228 for each arbitrary initial point (see Fig.1).
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Abstract. Linear semidefinite programming (SDP) problems have
received a lot of attentions because of large variety of applications.
Motivated by some results for SDP complementarity problems, this
paper gives a gradient-based neural network method for solving
SDP. It is shown that the proposed neural network is asymptoti-
cally stable and converges to an exact optimal solution of the SDP
problem.

1. Introduction

The SDP problem is given as below:

minimize f(x) = cTx (1.1)

subject to A(x) = A0 +
∑m

i=1 xiAi ⪯ 0, (1.2)

where x ∈ Rn, c ∈ Rn, Ai ∈ Rm×m, i = 1, 2, ..., n and ⪯ denotes the
negative semidefinite order. The dual of SDP problem, DSDP, can be
defined [2], as:

maximize ⟨A0, Z⟩
subject to ⟨−Ai, Z⟩ = ci, i = 1, 2, ...n,

Z ⪰ 0,

Key words and phrases. Gradient-based neural network, Semidefinite program-
ming, Convergent, Stability.
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The SDP problem is a convex optimization problem since its objective
function and constraint are convex.

Theorem 1.1. (Weak Duality Theorem) For every x feasible in SDP
and every Z feasible in DSDP, we have

(a) cTx− ⟨A0, Z⟩ ≥ 0
(b) If cTx = ⟨A0, Z⟩, then x is optimal in SDP and Z is optimal in

DSDP.

Unlike linear programming, SDP having an optimal solution does
not guarantee the same for its dual DSDP.

Theorem 1.2. (Strong Duality Theorem) Suppose SDP and DSDP
both are strictly feasible. Then SDP and DSDP both have optimal so-
lutions and their optimum objective values coincide.

Let V = Rn × Sm. For a given v ∈ V , we use the following notations
for simplicity v = (x, Z), where x ∈ Rn and Z ∈ Sm, respectively.

For a given matrix A ∈ Sm
+ , A

1
2 ∈ Sm

+ , denotes the matrix such that

A = A
1
2A

1
2 . Note that A

1
2 = P Tdiag[λ

1
2
1 , . . . , λ

1
2
m]P , where λj denotes

jth eigenvalue of A in nonincreasing order and P is the matrix in the
spectral decomposition A = P Tdiag[λ1, . . . , λm]P. The operator vec(.) :
Mm,n → Rmn will be used to explicitly transform matrices into vectors
by stacking the columns on top of each other. The notation DA(x)
represents the gradient of the mapping A(.) at x. Thus, DA(x) is a

linear operator from Rn into Sm defined by DA(x)y =
∑n

i=1 yi
∂A(x)
∂xi

and ∂A(x)
∂xi

= Ai. Finally, we define the adjoint operator V
∗ the formula

V ∗Z = (⟨V1, Z⟩, ..., ⟨Vn, Z⟩)T , ∀V ∈ Sm. (1.3)

Note also that a gradient of ⟨A(x), Z⟩ with respect to x is given by

∇x⟨A(x), Z⟩ = DA(x)∗Z. (1.4)

1.1.. A Gradient neural network model. Let us define the La-
grangian function of SDP by

L(y) = f(x) + ⟨A(x), Z⟩,
where y = (x, Z), and Z ∈ Sm is the Lagrange multiplier matrix for the
positive semidefiniteness constraint. Then the Karush-Kuhn-Tucker
(KKT) conditions for optimality of SDP are given by the following:

∇Lx(y) = 0, (1.5)

⟨Z,A(x)⟩ = 0, (1.6)

A(x) ∈ Sm
+ , Z ∈ Sm

+ . (1.7)
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where∇Lx(y) = ∇f(x) +DA(x)∗Z.
Assumption 1: The matrices Ai, i = 1, ..., n are linearly indepen-

dent.
Assumption 2 :(Slater condition) Both the primal and the dual

problems are strictly feasible.
Assumption 2 implies that the duality gap ⟨A(x), Z⟩ = 0 for opti-

mal solutions (x, Z).By this assumption, it is well known that x∗ is a
solution of SDP if and only if there exists a Z∗ such that (x∗, Z∗) sat-
isfying the KKT conditions (1.5)-(1.7). Now let us define a mapping
Φ : Sm × Sm → Sm

Φ(X, Y ) = (X2 + Y 2)
1
2 − (X + Y ),

which is obvious an extension of the definition of Fischer-Burmeister
function, with the arguments being symmetric matrices rather than
two real numbers.

Lemma 1.3. Let X, Y ∈ Sm
+ . Then XY = 0 if and only if ⟨X,Y ⟩ = 0.

Lemma 1.4. Tseng [30, Lemma 6.1]

Φ(X, Y ) = 0 ⇐⇒ X ∈ Sm
+ , Y ∈ Sm

+ , XY = 0.

By Lemma 1.3 and lemma 1.4, (1.6) and (1.7) can be rewrite as
Φ(A(x), Z) = 0. We now generalize the smoothed Fischer-Burmeister
function Φµ in an obvious way: Define Φµ : Sm × Sm → Sm by

Φµ(X, Y ) = (X2 + Y 2 + 2µ2I)
1
2 − (X + Y ).

Then we can state the following result.

Lemma 1.5. Let µ > 0 be any positive number, and let Φ be defined
by (2.7). Then

Φµ(X,Y ) = 0 ⇐⇒ X ∈ Sm
+ , Y ∈ Sm

+ , XY = µ2I.

Definition 1.6. For any C ∈ Sm
+ , define the linear mapping LC :

Sm → Sm by

LC [X] := CX +XC.

Lemma 1.7. Fix any µ > 0 and any X, Y, U, V ∈ Sm. For Φµ given
by (7), we have that Φµ is Frechet-differentiable and

∇Φµ(X, Y )(U, V ) = U + V − L−1
C [XU + UX + Y V + V Y ],

where C = (X2 + Y 2 + 2µI)
1
2 .

Let z = vec(Z), ai = vec(Ai) (i = 1, ...n), a(x) = vec(A(x)), φµ(a(x), z)) =

vec(Φµ(A(x), Z) and A =
[
a1 a2 . . . an

]T
.
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Lemma 1.8. If y∗ = (xT
∗ , z

T
∗ )

T satisfies the following equation

η(y) =

[
−
(
∇f(x) +A

[
φµ(a(x), z) + z

])
φµ(a(x), z)

]
= 0, (1.8)

then x∗ is a KKT point of SDP for every µ → 0+.

Now we can easily verify that for find the KKT system (1.8) we can
solve the following unconstrained smooth minimization problem:

minimize E(y) =
1

2
∥η(y)∥2

let x(.) and Z(.), be some time dependent variables. We can use
the steepest descent method to construct the following neural network
model for solving SDP problem (1)-(2) as:

dy(t)
dt

= −ρ∇E
(
y(t)

)
, ρ > 0, (1.9)

y(0) = y0, (1.10)

where ρ is a scale parameter.

1.2. Stability and Convergence Properties.

Theorem 1.9. (a) If x∗ is a solution to the SDP, then (xT
∗ , z

T
∗ )

T

is an equilibrium point of (1.9) and (1.10), where Z∗ is the
Lagrange multiplier associated with x∗.

(b) If the Jacobian matrix ∇η(y) of the mapping η defined in (1.8)
be nonsingular and y∗ = (xT

∗ , z
T
∗ )

T is an equilibrium point of
(1.9) and (1.10), Then x∗ is an solution to the SDP.

Theorem 1.10. The equilibrium point of the proposed neural network
model (1.9) and (1.10) is unique.

Theorem 1.11. Let y∗ be an isolated equilibrium point of (1.9) and
(1.10). Then y∗ is asymptotically stable for (1.9) and (1.10)

Theorem 1.12. Suppose that y = y(t, y0) is a trajectory of (1.9) and
(1.10) in which the initial point is y0 = y(0, y0) and the level set L(y0) =

{y ∈ Rn+m2
: E(y) ≤ E(y0)} is bounded, then a) γ+ = {y(t, y0) | t ≥ 0}

is bounded; and b) There exists ȳ such that limt→∞ y(t, y0) = ȳ.
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Abstract. In this paper, by means of the optimal control and
power series, the optimal control power series technique is pre-
sented. By this method numerical solutions of the HIV infection
model of CD4+T cells are obtained.

1. Introduction

In this paper, the optimal control power series technique for finding
the numerical solution of an epidemic model is presented in four steps.
To explain these fundamental steps in optimal control power series
technique, consider a nonlinear system as

ẋ = F (x(t)), x(t0) = x0, (1.1)

where x ∈ Rn.
Step 1 We can formulate this system as an optimal control problem for
optimization. The general form is

ẋ = F (x(t), u(t)), x(t0) = x0, (1.2)

2010 Mathematics Subject Classification. Primary 97M60; Secondary 34K28,
49J15.
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where u(t) ∈ Rm is control vector.
Step 2 The aim of the State-Dependent Riccati Equation (SDRE) con-
trol is to determine the sub-optimal controller for the system (1.2) such
that the following coast functional is minimized:

J =
∫∞
t0
(x(t)T Qx(t) + u(t)T Ru(t))dt,

s.t. ẋ = f(t, x(t)) + g(t, x(t))u(t),
(1.3)

where Q ∈ Rn×n and R ∈ Rm×m are state dependent weighting matri-
ces which satisfying Q ≥ 0 and R > 0 for all x.
Step 3 According to the Pontryagin’s maximum principle, the opti-
mality conditions for (1.3) are determined by the following nonlinear
two-point boundary value problem (TPBVP):

ẋ = f(t, x(t)) + g(t, x(t))
[
−R−1 gT (t, x(t))λ(t)

]
,

λ̇ = −
(
Qx(t) + (∂f(t,x(t))

∂x
)T λ(t) +

n∑
i=1

λi

[
−R−1 gT (t, x(t))λ(t)

]T ∂gi(t,x(t))
∂x

)
(1.4)

where λ(t) ∈ Rn. On the other hand, the optimal control law is illus-
trated by u(t)∗ = −R−1 gT (t, x(t))λ(t).
Step 4 The system (1.4) contains a nonlinear TPBVP that cannot be
solved analytically. But a solution can be expressed in terms of a power
series which takes the form

x(t) =
∞∑
n=0

cn (t− t0)
n, λ(t) =

∞∑
n=0

dn (t− t0)
n, (1.5)

for some fixed t0. Substituting the power series into the system (1.4)
gives some relationships among the coefficients {cn}, which gives a
power series solution.

2. Numerical application

In this section, we will apply the optimal control power series tech-
nique to a dynamical model of HIV CD4+T cells [1]

dT

dt
= q − αT + r T

(
1− T + I

Tmax

)
− k V T,

dI

dt
= k V T − β I, ,

dV

dt
= µβ I − γ V, (2.1)

with the initial conditions: T (0) = T0, I(0) = I0 and V (0) = V0. Here
T (t) represents the concentration of healthy CD4+T cells at time t, I(t)
represents the concentration of infected CD4+T cells at time t, and V (t)
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Figure 1. Graphic of the approximate solutions of T(t)
and I(t).

represents the concentration of free HIV at time t. In recent years, sev-
eral effective methods, including the Laplace Adomian decomposition
method, the Homotopy perturbation method, the Bessel collocation
method, the variational iteration method have been recommended to
find the approximated solutions of HIV CD4+T cells. Throughout this
section, q = 0.1, α = 0.02, β = 0.3, r = 3, γ = 2.4, k = 0.0027, N = 10
and Tmax = 1500. By optimal control power series technique, the fol-
lowing approximated solutions are obtained:

T = 0.1 + 0.3977800000 t+ 0.5922148450 t2 + 0.5875974940 t3

+ 0.4370467812 t4 + 0.2598795654 t5 + 0.1284691841 t6 + · · ·
I = 0.1225420020000 t+ 0.9993696680 t2 − 2.120992477 t3

+ 3.799090900 t4 − 4.597792247 t5 + 4.911909967 t6 + · · ·
V = 0.1− 0.2400000000 t+ 0.1880213003 t2 − 0.05048007343 t3

− 0.1601232001 t4 + 0.2882108934 t5 − 0.3384965683 t6 + · · ·
(2.2)

3. Conclusions and Discussions

In this paper, numerical solutions of a model for HIV infection of
CD4+T cells are obtained. The solutions of T (t) and I(t) for 0 ≤ t ≤
0.9, as shown in Fig 1 are plotted. Fig. 1 shows that, by applying
optimal control the number of T (t) increases gradually. In Fig 2, after
introducing control variable uI(t), the density of the concentration of
I(t) declines towards zero. In Tables 1-2, the obtained values of the
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approximate solutions of a model for HIV infection of CD4+T cells
at several values of t are compared with those of Laplace Adomian
decomposition method with Pade approximation [2] and Bessel collo-
cation method [3]. In Table 1, it is found that the solutions which are
obtained by applying our present method are in a good agreement with
the approximated solutions in [2] and [3] at 0 ≤ t ≤ 0.6. Also, it can be
concluded that our present results at 0.6 ≤ t ≤ 0.9, even better than
the results obtained by the Laplace Adomian decomposition method
with Pade approximation [2] and Bessel collocation method [3]. The
results in Table 2 show that, in [2] and [3] the density of infected cells
I(t) increase at 0 ≤ t ≤ 0.9. But in our present method, the intensity
of infected cells I(t) decrease with the passage of time after applying
control variable uI(t).

Table 1. Numerical comparison for T (t).

t LADM − Pade Bessel coll. Present method

0 0.1 0.1 0.1
0.2 0.2088072731 0.2038616561 0.2087367817
0.4 0.4061052625 0.3803309335 0.4059521352
0.6 0.7611467713 0.6954623767 0.7635498323
0.9 1.5245154522 1.4521254658 1.977214845

Table 2. Numerical comparison for I(t).

t LADM − Pade Bessel coll. Present method

0 0 0 0
0.2 0.0000060327 0.0000062478 0.02772720781
0.4 0.0000131591 0.0000129355 0.08586776364
0.6 0.0000212683 0.0000203526 0.16088182680
0.9 0.0000385462 0.0000325452 0.00000600060
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Abstract. In this paper, an approach is presented to design a
stabilizer control for nonlinear systems. The hyperbolic systems
are first introduced and then a stabilizer control is designed. This
stabilizer control can be utilized for any nonlinear control system.
By applying this control for an inverted pendulum system, the
efficiency of approach is illustrated.

1. Introduction

Many applied systems in the world are nonlinear and designing con-
trol to these systems is usually a full challenging work. In recent years,
an approach based on the fuzzy rule-base systems has been presented
which is called hyperbolic Modeling (see [1, 2, 3] for details). In this
work, we show that we can achieve to the hyperbolic model correspond-
ing to any nonlinear control system without utilizing the fuzzy con-
cepts. Also, we show that this hyperbolic model can be easily obtained
by solving an optimization problem. Here, we propose a stabilizer
control to the hyperbolic system and apply it for the main nonlinear
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system. By applying the approach for an inverted pendulum system,
we show the efficiency of the approach.

2. Hyperbolic model

Consider the following nonlinear control system{
ẋ = A tanh(kx) +Bu,

x(0) = α,
(2.1)

where x = (x1, . . . , xn) and u = (u1, . . . , up) are the state and control
variables, respectively, A = (aij)n×n and B = (bij)n×p are constant
matrices, k = (k1, . . . , kn)

T and α = (α1, . . . , αn)
T are constant vectors,

and tanh(kx) =
(
tanh(k1x1), . . . , tanh(knxn)

)T
. Control system (2.1)

is called a hyperbolic model.

2.1. Design a stabilizer control. A control to stabilize the nonlinear
control system (2.1) can be given as follows

u = H tanh(kx) (2.2)

where H = (hij)n×n is a constant matrix. By replacing control (2.2) in
system (2.1), we get the following system{

ẋ = (A+BH) tanh(kx),

x(0) = α.
(2.3)

Theorem 2.1. (See [1, 2]) Consider system (2.3). If there exists a
diagonal matrix p > 0 such that

P (A+BH) + (A+BH)TP + I = 0, (2.4)

then system (2.3) is globally asymptotically stable
(
i.e. for any α ∈ Rn,

limt→∞ x(t) = 0
)

3. Constructing the hyperbolic from of nonlinear
systems

Consider the following nonlinear control system{
ẋ = f(x, u),

x(0) = α,
(3.1)

where f(·, ·) is a continuous function. We suggest the following opti-
mization problem to achieve the hyperbolic form of the system (3.1):

Minimize
A,B,k

J(A,B, k) =

∫
Nδ(0)

∫
Nδ(0)

(
A tanh(kx)+Bu−f(x, u)

)2
dxdu

(3.2)
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where Nδ(0) is a neighborhood of origin (i.e. the equilibrium point of
system (3.2)) and δ > 0 is a small number. The optimization problem
(3.2), can be easily solved by approximate discretization methods.

4. Numerical simulation

Consider the following inverted pendulum system (see Figure 1(a))
ẋ1 = x2,

ẋ2 = F (x1, x2) +G(x1, x2)u,

x1(0) = α1, x2(0) = α2,

(4.1)

where

F (x1, x2) =
g(mc +m)−mlx2

2 cosx1 sin x1

l(mc +m)(4
3
− m cos2 x1

mc+m
)

,

G(x1, x2) =
cosx1

l(mc +m)(4
3
− m cos2 x1

mc+m
)
.

Here, g is the acceleration of gravity, mc is the mass of cart, m is the
mass of the pole, 2l is the pole’s length and u is the applied force (or
control). We assume that m = 0.1, mc = 1 and l = 0.5. We first use
the following coordinate transformation and then apply the presented
approach:

y1 = x1, y2 = x1 + x2.

By these, we convert the system (4.1) into the following system
ẏ1 = y2 − y1,

ẏ2 = F (y1, y2 − y1) +G(y1, y2 − y1)u,

y1(0) = α1, y2(0) = α1 + α2.

Now, we solve the corresponding optimization problem (3.2) for δ =
0.1. Here, we apply the trapezoidal formula, for N = 20 points, to
discretize the integral. By solving the obtained nonlinear programming
problem, we get

A =

[
−0.9822 0.9089
14.48 1.1765

]
, B =

[
0

1.4603

]
, k =

[
1.0204
0.8513

]
.

We assume that P = diag(P 2
1 , P

2
2 ) and H = [h1, h2]

T , and solve the
corresponding system (2.4). We get

P =

[
P 2
1 0
0 P 2

2

]
=

[
0.7135 0

0 0.1385

]
, H =

[
h1

h2

]
=

[
−31.2898
−18.6460

]
.

In Figure 1(b) the corresponding stabilizer control is illustrated. Also,
in Figures 1(c) and 1(d), the state variables of system (4.1) and its
corresponding hyperbolic form are shown, for α1 = 0.5 and α2 = −0.5.
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5. Conclusion

In this paper, we proposed a new approach to design a stabilizer
control for nonlinear systems. We showed that the hyperbolic model
can be utilized to obtain the stabilizer control for any general nonlin-
ear system. We demonstrated the approach for an inverted pendulum
system.

(a) Inverted pendulum system

t
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u
(.

)
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0

(b) The stabilizer control
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(c) The state for main system

t
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(d) The state for hyperbolic system

Figure 1. Charts
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Abstract. Prior studies indicate that neural network can be used
to solve various optimization problems. The main idea of the neu-
ral network approach for optimization is to construct a nonnegative
energy function and establish a dynamic system that represents an
artificial neural network. The dynamic system is usually in the
form of first order ordinary differential equations. Furthermore, it
is expected that the dynamic system will approach its static state
(or an equilibrium point), which corresponds to the solution for the
underlying optimization problem, starting from an initial point. In
the present paper, a neural network model for solving the quadratic
minimax problem is presented. Several numerical simulations are
also provided.

1. Introduction

In this paper, we consider the following DQM problem:

minx maxy f(x, y) =

(
x
y

)T (
Q11 Q12

Q21 −Q22

)(
x
y

)
+

(
c1
c2

)T (
x
y

)
, (1.1)
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subject to

d ≤ B1x+B2y ≤ h, (1.2)

where Q11 ∈ IRn×n, Q22 ∈ IRm×m are symmetric and positive semi-
definite matrix, Q12 ∈ IRn×m, Q21 ∈ IRm×n, B1 ∈ IRl×n B2 ∈ IRl×m,
c1 ∈ IRn, c2 ∈ IRm, and d, h ∈ IRl and some elements of −d and h can
be +∞. In this paper, we denote Γ = {(xT , yT )T | x ∈ IRn, y ∈ IRm, d ≤
B1x + B2y ≤ h}, then a point (x∗T , y∗T )T ∈ Γ is said to be a saddle
point of f(x, y) over the feasible region Γ if

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), ∀x ∈ X(y∗) , y ∈ Y (x∗), (1.3)

where

X(y∗) = {x ∈ IRn|d ≤ B1x+B2y
∗ ≤ h}, (1.4)

Y (x∗) = {y ∈ IRm|d ≤ B1x
∗ +B2y ≤ h}. (1.5)

It is clear that DQM problem (1.1)-(1.2) can be written as follows

min max f(x, y) = xTQ11x+ xTQ12y + yTQ21x− yTQ22y + cT1 x+ cT2 y (1.6)

subject to (x, y) ∈ Γ. (1.7)

Let g1(x
∗, y) = yTQ22y − ((x∗)TQ12 + (x∗)TQT

21 + cT2 )y and g2(x, y
∗) =

xTQ11x+ ((y∗)TQT
12 + (y∗)TQ21 + cT1 )x. From Proposition 2.1 in [2, 1],

we know that (x∗T , y∗T )T is a solution of the DQM problem (1.1)-
(1.2), if and only if g1(x

∗, y) + g2(x, y
∗) obtains its minimum over Γ at

(x∗T , y∗T )T .
Now denote g(x, y, x∗, y∗) = g1(x

∗, y) + g2(x, y
∗); then

g(x, y, x∗, y∗) =

yTQ22y − ((x∗)TQ12 + (x∗)TQT
21 + cT2 )y + xTQ11x+ ((y∗)TQT

12 + (y∗)TQ21 + cT1 )x =(
x
y

)T (
Q11 On×m

Om×n Q22

)(
x
y

)
+

(
Q12(y

∗) +QT
21(y

∗) + c1
−QT

12(x
∗)−Q21(x

∗)− c2

)(
x
y

)
,

where O indicates a zero matrix. For simplicity our discussion, denote

Q =

(
Q11 On×m

Om×n Q22

)
, G =

(
Q12(y

∗) +QT
21(y

∗) + c1
−QT

12(x
∗)−Q21(x

∗)− c2

)
,

w =

(
x
y

)
, E = (B1, B2),

then the DQM (1.1)-(1.2) is equivalent to the following problem

min g(w) = wTQw +GTw (1.8)

subject to

d ≤ Ew ≤ h. (1.9)
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We propose a neural network for solving (1.8)-(1.9) as

dw

dt
= −

(
2Qw +G+ ET (u1 + Ew − h)+ − ET (u2 + d− Ew)+

)
, (1.10)

du1

dt
= (u1 + Ew − h)+ − u1, (1.11)

du2

dt
= (u2 + d− Ew)+ − u2, (1.12)

with the initial point (wT
0 , u

T
0 )

T . We denote z = (wT , uT )T ∈ IRn+m+2l,
and

A =

(
E
−E

)
, b =

(
h
−d

)
,

and define

η(z) =

(
−
(
2Qw +G+ AT (u+ Aw − b)+

)
(u+ Aw − b)+ − u

)
. (1.13)

Thus neural network (1.10)-(1.12) can be written as:

dz

dt
= θη(z), (1.14)

z(t0) = z0, θ > 0. (1.15)

2.. Stability and convergence analysis

In this section, we shall study some stability and convergence prop-
erties for (1.14)-(1.15).

Theorem 2.1. Let z∗ = (w∗T , u∗T )T be the equilibrium point of the
neural network (1.14)-(1.15). Then z∗ is a KKT point of the problem
(1.8)-(1.9) and its dual. On the other hand, if w∗ ∈ IRn+m is an optimal
solution of problem (1.8)-(1.9), then there exists u∗ ∈ IR2l such that
z∗ = (w∗T , u∗T )T is an equilibrium point of the proposed neural network
(1.14)-(1.15).

Lemma 2.2. For any initial point z(t0) = (w(t0)
T , u(t0)

T )T , there ex-
ists a unique continuous solution z(t) = (w(t)T , u(t)T )T for system
(1.14)-(1.15).

Lemma 2.3. Let A ∈ IR2l×(m+n) be of full rank. Then the Jacobian
matrix ∇η(z) of the mapping η defined in (1.13) is negative semidefinite
matrix.

Theorem 2.4. Let the assumption of lemma 2.3 be satisfied. Then the
proposed neural network model in (1.14)-(1.15) is globally stable in the
Lyapunov sense and is globally convergent to z∗ = (w∗T , u∗T )T , where
w∗ is the optimal solution of (1.8)-(1.9).
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Theorem 2.5. The convergence rate of the neural network (1.14)-
(1.15) increases as θ increases.

Example 1[3]

minx maxy f(x, y) = x2
1 − y1 − 2y2 − y23

subject to

−y1 − 2y2 ≤ 0.

The set consisted of all optimal solutions for this problem is

EN = {(x1, y1, y2, y3)
T |x1 = y3 = 0, y1 + 2y2 = 0}.

Figures 1 and 2 display the convergence with z1,0 = (1,−1, 1,−1, 1)T

According to the convergence of x1(t), y3(t) and y1(t) + 2y2(t) we con-
clude that the output trajectories of the proposed neural network model
converges to an element of EN .
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Figure 1. The convergence behavior of x1, x2, y1 and
y2 with the initial point z1,0 in Example 1.
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Abstract. In this work, we investigate the optimal control of
a continuous-stirred tank reactor. The present problem, by sub-
stituting the control variable by its expression derived from the
system model in the performance index, is first converted into a
variational problem and then its solution is achieved by satisfying
Euler-Lagrange equation. Finally, the parametric iteration method
is applied to solve the resulting the Euler-Lagrange equation and
the optimal control law is readily obtained by simple calculation.

1. Introduction

Here we consider the temperature control problem by cooling-rate
manipulation of a continuous-stirred tank reactor (CSTR). The optimal
control problem of the temperature is formulated as follows [1]:

minu(t) J =
1

2

∫ 0.5

0

[
(x(t)− 1.3)2 + µu2(t)

]
dt, µ > 0 (1.1)

subject to
ẋ(t) = 1− x(t) + a e−γ/x(t) − u(t),
x(0) = 1.5 and x(0.5) = 1.3.

(1.2)
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The dimensionless variables and the used parameter values in the
reactor model (1.2) are as below:

x(t) = T
Tf
, t = τ

F/V
, a = −∆Hk0V

ρCpTfF

γ = E
RTf

, u = Q̇
ρCpTfF

, x0 =
T0

Tf
, xd =

Td

Tf
,

a = 1000, γ = 10, µ = 0.25.

Now one can transform the optimal control (1.1) and (1.2) to a vari-
ational problem with the same boundary conditions. To do this, from
(1.2), we obtain the expression for u(t) as a function of t, x(t) and ẋ(t)
as follows:

u(t) = 1− x(t) + a e−γ/x(t) − ẋ(t), (1.3)

which by substituting (1.3) into (1.1) yields the following variational
problem

minx(t) J =
1

2

∫ 0.5

0

[
(x(t)− 1.3)2 + µ

(
1− x(t) + a e−γ/x(t) − ẋ(t)

)2]
dt,

(1.4)
and thus

G (t, x(t), ẋ(t)) = (x(t)− 1.3)2 + µ
(
1− x(t) + a e−γ/x(t) − ẋ(t)

)2
.

(1.5)
Therefore, according to the Euler-Lagrange equation ∂G

∂x
− d

dt
(∂G
∂ẋ
) =

0, [2], and by simple operation, we gain the following strongly nonlinear
two-point boundary value problem

ẍ(t) =
1

µ
(x(t)− 1.3) +

(
1− x(t) + a e−γ/x(t)

)( aγ

x2(t)
e−γ/x(t) − 1

)
,

(1.6)
subject to the boundary conditions

x(0) = 1.5 and x(0.5) = 1.3. (1.7)

2. Main results

In general, the Euler-Lagrange equation is nonlinear. So, it is difficult
to analytically obtain the solution of the two-point boundary value
problem (1.6) with the boundary conditions (1.7). Here we will apply
the effective parametric iteration method (PIM) to solve (1.6), which
is an approximate analytical method. According to [3], the PIM for
solving (1.6) is as follows:

xn+1(t) = xn(t)+h

∫ t

0

(t−s)Fn(s)ds−h
t

0.5

∫ 0.5

0

(0.5−s)Fn(s)ds, (2.1)

with
xn+1(0) = 1.5 and xn+1(0.5) = 1.3, (2.2)
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where

A[xn(s)] = ẍn(s)−
1

µ
(xn(s)− 1.3)

−
(
1− xn(s) + a e−γ/xn(s)

)( aγ

x2
n(s)

e−γ/xn(s) − 1

)
(2.3)

and
A[xn(s)] = Fn(s) +O

(
(s− η)n+1

)
. (2.4)

with η = (t0 + tf )/2, t0 = 0 and tf = 0.5. This selection of η could
uniformly distribute the error across the interval. Now, in light of the
PIM procedure (2.1), the boundary conditions (2.2) and by choosing
h = −1, η = 0.25 and x0(t) = 1.5− 0.4t, we will get the following PIM
approximations:

x0(t) = 1.5− 0.4t,
x1(t) = 1.5− 0.79610040608011350436t+ 0.79220081216022700870t2,
x2(t) = 1.5− 0.70855065133536771015t+ 1.0470331349744920739t2

−0.8598636646075133072t3,
· · ·
The absolute errors of the state variable x(t) and the control variable

u(t) using the 15th-order PIM approximation are shown in Table 1.

Table 1. Absolute errors of x(t) and u(t) using the
15th-order PIM approximation

t |u15(t)− uNum(t)| |x15(t)− xNum(t)|
0.1 1.12×10−6 1.19×10−7

0.2 1.56×10−7 2.17×10−7

0.3 9.17×10−7 2.16×10−7

0.4 1.24×10−6 1.45×10−7

Also, the relative error of the performance index, i.e., En = |Jn+1−Jn
Jn+1

|
can be seen in Table 2.

Table 2. Relative error of the performance index using
the 15th-order PIM approximation

n = 1− 5 n = 6− 10 n = 11− 15
E1 = 5.4× 10−2 E6 = 2.4× 10−5 E11 = 1.4× 10−8

E2 = 4.5× 10−3 E7 = 1.1× 10−5 E12 = 1.4× 10−9

E3 = 5.8× 10−3 E8 = 1.0× 10−6 E13 = 5.2× 10−10

E4 = 4.4× 10−4 E9 = 4.1× 10−7 E14 = 5.2× 10−11

E5 = 2.9× 10−4 E10 = 3.9× 10−8 E15 = 1.8× 10−11
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Abstract. In this paper, we present results which are obtained
from studying an inertial four-neuron system with multiple delays.
This network represents a nonlinear system of ordinary differential
equations with different delays. By analyzing its associated char-
acteristic equation, the existence of codimension-one bifurcations
of the system is investigated.

1. Introduction

In recent decades, modeling biological neuron has attracted great
attention because of studies of Hodgkin and Huxley on the firing ac-
tivities of squid axon. In 1987, the neuron system was modeled by the
circuit with inertial term [1]. Then, Wheeler and Schieve (1997) stud-
ied an inertial two-neuron system. Furthermore, time delays often oc-
cur during the signal transmission. Marcus and Westervelt presented a
neural network with delay, [5]. Studies on neural networks showed that
they have complex dynamical behavior, such as chaos and bifurcations.
For example, Li et al. [4] considered a single delayed inertial neuron
model. They observed Hopf bifurcation and chaotic behavior. After
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their works, many researchers has been attracted to analyze dynamics
of a delayed inertial neural network, [2, 3] and refernces there in. In
2009, Liu et al. discussed on stability of bifurcating periodic solutions
for a single delayed inertial neuron model under periodic excitation.
Moreover, he studied dynamics of an inertial two-neuron system with
time delay in another work. Then, an inertial four-neuron model with
time delay was investigated by Ge and Xu (2012 and 2013). In recent
years, there are other works on inertial neural systems with time delay
such as the study of Song and Xu on an inertial two-neuron coupling
system with multiple delays (2014) and the work of Ge and Xu on an
inertial four-neuron system with time delay.
Based on the above studies, in this paper, the four-neuron inertial neu-
ral system with different time delays is cosidered as follows

v̈1 = −v̇1 − µv1 + af(v3(t− τ)) + af(v4(t− τ)),

v̈2 = −v̇2 − µv2 + bf(v3(t− τ)) + bf(v4(t− τ)),

v̈3 = −v̇3 − µv3 + cf(v1(t− δ)) + cf(v2(t− δ)),

v̈4 = −v̇4 − µv4 + df(v1(t− δ)) + df(v2(t− δ)). (1.1)

This system is almost similar to the system of [2]. In this system, a, b, c
and d measure the synaptic coupling weights through neurons;µ > 0
describes the stability of internal neuron processes; v1, v2, v3 and v4 de-
note the states of the neurons; τ, δ > 0 represent the time delays in
signal transmission between the neurons; f(.) is the nonlinear activa-
tion function. In [2], they considered τ = δ.
In this study, we would like to get the conditions which guarantee the
existence of codimension-one bifurcations for this system with differ-
ent time delays. To the best of our knowledge, we only studied this
type of architecture of the four-neuron inertial neural model from the
viewpoint of the existence of codimension-one bifurcations.

2. Main results

We consider system 1.1 with the following assumptions:
(H1) f ∈ C1, f(0) = 0, f ′(0) = 1
(H2) Sgn((a+ b)(c+ d)) > 0,
(H3) η := δ + τ and l := (a+ b)(c+ d).
It is obvious that the origin is the equilibrium of 1.1. Let v1 = x1, v̇1 =
x2, v2 = x3, v̇2 = x4, v3 = x5, v̇3 = x6, v4 = x7, v̇4 = x8. Then the

125



CODIMENSION-1 BIFURCATIONS IN A DELAYED NERTIAL NEURAL SYSTEM

following system is topolgically equivalent to 1.1

ẋ1 = x2,

ẋ2 = −x2 − µx1 + af(x5(t− τ)) + af(x7(t− τ)),

ẋ3 = x4,

ẋ4 = −x4 − µx3 + bf(x5(t− τ)) + bf(x7(t− τ)),

ẋ5 = x6,

ẋ6 = −x6 − µx5 + cf(x1(t− δ)) + cf(x3(t− δ)),

ẋ7 = x7,

ẋ8 = −x8 − µx7 + df(x1(t− δ)) + df(x3(t− δ)). (2.1)

Then, the associated charectristic equation of system 2.1 is as follows

P (λ, η) = p8(λ) + p4(λ)e
−ηλ, (2.2)

where

p8(λ) = (λ2 + λ+ µ)4

= λ8 + 4λ7 + λ6(4µ+ 6) + λ5(12µ+ 4) + λ4
(
6µ2 + 12µ+ 1

)
+ λ3

(
12µ2 + 4µ

)
+ λ2

(
4µ3 + 6µ2

)
+ 4λµ3 + µ4

p4(λ) = −l(λ2 + λ+ µ)2

= −l(λ4 + 2λ3 + λ2(2µ+ 1) + 2λµ+ µ2).

For simplicity, assume that q(λ) = (λ2 + λ+ µ)2. It is clear that

P (λ, η) = q2(λ)− lq(λ)e−ηλ

dP (λ, η)

dλ
= q′(λ)(2q(λ)− le−ηλ) + lηq(λ)e−ηλ.

Now, we can prove that there are several types of bifurcation.
(a) It is not hard to compute

P (0, η) = µ2(µ2 − l)

dP (λ, η)

dλ
|λ = 0 = l(1 + ηµ2).

If µ2 = l, then zero is a simple root of 2.2. In this case,
codimension-one bifurcations such as saddle-node bifurcation,
pitchfork bifurcation or transcritical bifurcation can occur.
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(b) Let λ = iw (w > 0) be the root of 2.2. Thus we have the
following equation by separating the real and imaginary parts

h(w2) = w16 + (4− 8µ)w14 +
(
28µ2 − 24µ+ 6

)
w12

+
(
−56µ3 + 60µ2 − 24µ+ 4

)
w10 + w8

(
70µ4 − 80µ3 + 36µ2 − 8µ− l + 1

)
+ w6

(
−56µ5 + 60µ4 − 24µ3 + 4µ2 + l(4µ+ 2)− 4l

)
+ w4

(
28µ6 − 24µ5 + 6µ4 + l

(
−6µ2 − 4µ− 1

)
+ 8lµ

)
+ w2

(
−8µ7 + 4µ6 − 4lµ2 + l

(
4µ3 + 2µ2

))
+ µ8 − lµ4

= 0

If y = w2 and µ4 − l < 0 then h(y) = 0 has a positive root. If

w is not a simple root, then dP (λ,η)
dλ

|λ=iw = 0. Hence

Im(η) =
−i(p′4(iw)

¯p4(iw)− p4(iw) ¯p′4(iw))

2|p4(iw)|2
+

i(p8(iw) ¯p′8(iw)− p′8(iw)
¯p8(iw))

2|p8(iw)|2
= 0

Therefore, If h′(w2) ̸= 0 then w is a simple root of 2.2.On the
other hand, we have

dRe(λ)

dη
|λ=iw =

w2(1− 2µ+ 2w2)

(ηµ+ 1)2 + (η(−2ηµ+ η + 2) + 4)w2 + η2w4
.

By the above discussion, we have the following theorem.

Theorem 2.1. If one of the following conditions satisfies then one of
codimension-one bifurcations such as saddle-node bifurcation, pitchfork
bifurcation, transcritical bifurcation or Hopf bifurcation can occur.

(a) µ2 = l,

(b) µ4 − l < 0 , h′(w2) ̸= 0 and (1− 2µ+ 2w2) ̸= 0.

References

1. K.L. Badcock and R.M. Westervelt,Dynamics of simple electronic neural net-
works, Phys. D 28 (1987), 305–316.

2. J. Ge, J. Xu,Stability switches and fold-Hopf bifurcations in an inertial four-
neuron network modelwith coupling delay, Neurocomputing. 110 (2013), 70–79.

3. J. Ge, J. Xu,Double Hopf bifurcation in a four-neuron delayed system with iner-
tial terms, Nonlinear Dyn. 82(2015), no.4, 1969–1978.

4. C.G. Li, G.R. Chen, X.F. Liao et al., Hopf bifurcation and chaos in a single
inertial neuron model with time delays, Eur. Phys. J. B 41 (2004) 337–343.

5. C.M. Marcus, R.M.Westervelt, Stability of analog networks with delay, Phys.
Rev. A 39 (1989), 347–359.

127



The Extended Abstracts of

The 1st Seminar on Control and Optimization

11-12th October 2017, Ferdowsi University of Mashhad, Iran

SOLVING OPTIMAL CONTROL PROBLEM WITH
CHEBYSHEV POLYNOMIALS

JAVAD SABOURI∗, SOHRAB EFFATI AND ASGHAR GHORBANI

Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi
University of Mashhad, Mashhad, Iran

ja.sabouri@mail.um.ac.ir; s-effati@um.ac.ir; as.Ghorbani@yahoo.com

Abstract. We apply the variational iteration method (VIM) to
approximate the solution of a class of optimal control problems
(OCPs). First, we propose an approximated function based on
Chebyshev polynomials for the control function in the OCP. Then
this problem is converted to a problem in the calculus of variations.
By using the VIM, we obtain the approximated solution for the
state function of the OCP. Then by using a optimization approach
for cost functional, we determine unknown coefficients for control
function.

1. Introduction

Chebyshev polynomials Tn(z) are defined as:

Tn(z) = cos(n cos−1(z)); −1 ≤ z ≤ +1

where the independent variable z is defined between−1 and +1. Cheby-
shev polynomials can be obtained by means of the following recurrence
formula:

T0(z) = 1,
T1(z) = z,
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Tn+1(z) = 2zTn(z)− Tn−1(z), n = 1, 2, ...

then an arbitrary function f(z) can be approximated by the Chebyshev
polynomials:

f(z) =
N∑

n=0

bnTn(z),

where bn are unknown coefficients.
Now we describe the OCP. It is the problem of finding an optimal

control u(t) that minimizes the cost functional:

J(u(t)) =

∫ b

a

f(x(t), u(t), t) dt, (1.1)

which satisfies the following dynamical system:

ẋ(t) = g(x(t), u(t), t), (1.2)

and the initial condition:
x(a) = xa. (1.3)

where x(t), denotes the state variable, u(t) is the control variable, f
and g are two continuously differentiable functions with respect to all
their arguments.

2. Main results

In this section we explain the VIM for solving the above OCP. To
illustrate its basic idea of the technique, we consider the following gen-
eral nonlinear system:

L[x(t)] +N [x(t)] = g(t), (2.1)

where L is a linear operator, N is a nonlinear operator, and g(t) is
a given continuous function. The basic character of the method is to
construct a correction functional for system (2.1) which reads

xn+1(t) = xn(t) +

∫ t

0

λ(s)[Lxn(s) +Nx̃n(s)− g(s)] ds (2.2)

where λ is a general Lagrange multiplier which can be identified op-
timally via variational theory, xn(t) is the nth approximate solution,
and x̃n denotes a restricted variation, i.e. δx̃n = 0.

It is obvious that in the VIM, we first require the determination of the
Lagrangian multiplier λ. Having determined the Lagrangian multiplier,
the successive approximations xn(t), n ≥ 0, of the solution x(t) will be
readily obtained by choosing x0(t). Consequently, the solution will be
as:

x(t) = lim
n→∞

xn(t). (2.3)

129



OPTIMAL CONTROL PROBLEM WITH CHEBYSHEV POLYNOMIAL

Now to solve the OCP (1.1)-(1.3), we first propose an approxi-
mated function for u(t) based on Chebyshev polynomials like uN(t) =
N∑
k=0

bkTk(t). Then we substitute the approximated control function in

cost functional and ordinary dynamical system, therefore we obtain the
calculus of variations problem. Now we use the VIM for solving the
resulted differential equation as below:

xn+1(t) = xn(t) +

∫ t

a

λ(s)g(xn(s),
N∑
k=0

bkTk(s), s) ds,

x0(t) = x(a) = xa. (2.4)

Example 2.1. Consider the following OCP, to minimize

J(u(t)) =
1

2

∫ 1

0

[x1(t)
2 + x2(t)

2 + u(t)2] dt, (2.5)

subject to the dynamic constraints:

ẋ1(t) = −x1(t) + x2(t) + u(t), (2.6)

ẋ2(t) = −2x2(t), (2.7)

and the initial conditions:

x1(0) = x2(0) = 1.

The exact solution for this OCP is:

x1(t) = −3

2
e−2t + 2.48164e−

√
2t + 0.018352e

√
2t

x2(t) = e−2t

u(t) =
1

2
e−2t − 1.02793e−

√
2t + 0.0443056e

√
2t

The optimal value of performance index for this problem is J∗ =
0.4319835549.

Now we suppose that uN(t) =
N∑
k=0

bkTk(t), where Tk(t) is kth Chebyshev

polynomial.
By using formula (2.4), we have the following recurrence relations:

x1
n+1(t) = x1

n(t)−
∫ t

0

[ẋ1
n(s) + x1

n(s)− x2
n(s)−

N∑
k=0

bkTk(s)] ds

x1
0(t) = 1

x2
n+1(t) = x2

n(t)−
∫ t

0

[ẋ2
n(s) + 2x2

n(s)] ds
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x2
0(t) = 1 (2.8)

The numerical results can be observed in Table 1.

Table 1. Different optimal values of cost functional J

N n Different optimal values of cost functional J
3 10 0.431987476
3 12 0.431987281
3 15 0.431987278
4 10 0.431987439
4 12 0.431987244
4 15 0.431987240

Table 1 shows that the developed technique is effective and accurate
for the OCPs.
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Abstract. The Bezier curve method is presented to solve delay
systems. A direct algorithm for solving this problem is given. The
delay function and inverse time function are expanded by Bezier
curves. We have chosen the Bezier curves as piecewise polynomials
of degree n, and determine Bezier curves on any subinterval by
n + 1 control points. The approximate solution of delay systems
containing inverse time is derived.

1. Introduction

This paper goals at solving delay systems containing inverse time of
the following form

ẋ(t) = A(t)x(t) + C(t)(x1(t− τ1) . . . xp(t− τp))
T

+ D(t)(x1(tf − t) . . . xp(tf − t))T +G(t)u(t),

x(t) = ϕ(t), t ∈ [−τmax, t0], (1.1)

where x(t) = (x1(t) . . . xp(t))
T ∈ Rp, u(t) = (u1(t) . . . um(t))

T ∈ Rm are
respectively state and control functions while ϕ(t) = (ϕ1(t) . . . ϕp(t))

T ,
is known vector function and τi’s (i = 1, 2, . . . , p) are non-negative
constant time delays, and τmax = max{τi, 1 ≤ i ≤ p}. We assume the
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matrices A(t) = [aij(t)]p×p, C(t) = [cij(t)]p×p, D(t) = [dij(t)]p×p and
G(t) = [gij(t)]m×m are matrix functions.

2. Function approximation

Divide the interval [t0, tf ] into a set of grid points such that

ti = t0 + ih, i = 0, 1, . . . , k,

where h =
tf−t0

k
, and k is a positive integer. Let Sj = [tj−1, tj] for

j = 1, 2, . . . , k. Then, for t ∈ Sj, delay systems containing inverse
time (1.1) can be decomposed to the following problems:

ẋj(t) = A(t)xj(t) + C(t)(x
−k11+j
1 (t− τ1) . . . x

−kp1+j
p (t− τp))

T

+ D(t)(x
k12−j
1 (tf − t) . . . xkp2−j

p (tf − t))T +G(t)uj(t),

x(θ) = ϕ(θ), θ ∈ [−τmax, t0], (2.1)

where xj(t) = (xj
1(t) . . . x

j
p(t))

T , and uj(t) = (uj
1(t) . . . uj

m(t))
T are

respectively vectors of x(t) and u(t) which are considered in t ∈ Sj,

we mention that x
−ki1+j
i (t − τi); 1 ≤ i ≤ p, is the i-th component of

(x
−k11+j
1 (t − τ1) . . . x

−kp1+j
p (t − τp))

T where (t − τi) ∈ [t−ki1+j−1, t−ki1+j],

and x
−ki2+j
i (tf − t); 1 ≤ i ≤ p is the i-th component of (x

k12−j
1 (tf −

t) . . . x
kp2−j
p (tf − t))T where (tf − t) ∈ [tki2−j−1, tki1−j], Also

ki
1 =

{
τi
h

τi
h
∈ N

([ τi
h
] + 1) τi

h
/∈ N

, 1 ≤ i ≤ p,

ki
2 =

{
tf
h

tf
h
∈ N

([
tf
h
] + 1)

tf
h

/∈ N
1 ≤ i ≤ p,

where [ τi
h
] and [

tf
h
] denote the integer part of τi

h
and

tf
h
respectively.

Our strategy is using Bezier curves to approximate the solutions xj(t)
and uj(t) by vj(t) and wj(t) respectively, where vj(t) and wj(t) are
given below. Individual Bezier curves that are defined over the subin-
tervals are joined together to form the Bezier spline curves. For j =
1, 2, . . . , k, define the Bezier polynomials of degree n that approximate
respectively the actions of xj(t) and uj(t) over the interval [tj−1, tj] as
follows

vj(t) =
n∑

r=0

aj
rBr,n(

t− tj−1

h
),

wj(t) =
n∑

r=0

bj
rBr,n(

t− tj−1

h
), (2.2)
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where

Br,n(
t− tj−1

h
) =

(
n

r

)
1

hn
(tj − t)n−r(t− tj−1)

r,

is the Bernstein polynomial of degree n over the interval [tj−1, tj], a
j
r

and bj
r are respectively p andm ordered vectors from the control points.

Now, we have

R1,j(t) = v̇j(t)− A(t)vj(t)− C(t)

(v
−k11+j
1 (t− τ1) . . . v

−kp1+j
p (t− τp))

T

− D(t)(v
k12−j
1 (tf − t) . . . vk

p
2−j

p (tf − t))T −G(t)wj(t),(2.3)

Now, we define the residual function in Sj as follows

Rj =

∫ tj

tj−1

(M∥R1,j(t)∥2)dt, (2.4)

where ∥.∥ is the Euclidian norm (Recall that R1,j(t) is a p vector where
t ∈ Sj) and M is a sufficiently large penalty parameter. Our aim is to

solve the following problem over S =
∪k

j=1 Sj:

min
k∑

j=1

Rj

s.t. aj
n(tj − tj−1)

n = aj+1
0 (tj+1 − tj)

n,

(aj
n − aj

n−1)(tj − tj−1)
n−1 = (aj+1

1 − aj+1
0 )(tj+1 − tj)

n−1

, j = 1, 2, . . . , k − 1.

(2.5)

The mathematical programming problem (2.5) can be solved by many
subroutine algorithms, we used Maple 12 to solve this optimization
problem.

3. numerical examples

Example 3.1. Consider the delay system containing inverse time de-
scribed by (see [1]),

ẋ(t) =

[
t2 + 1 −t2

0 −9

]
x(t) +

[
1 −1
9 0

]
x(t− 1

3
)

+

[
1 0
−1 1

]
x(1− t) +

[
4t+ 3
8t+ 15

]
u(t),

ϕ(t) =

[
t2 − 1
t2 + 1

]
, t ∈ [−1

3
, 0]
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where we have the following exact solution

x(t) =
[
x1(t) x2(t)

]T
=

[
t2 − 1 t2 + 1

]T
Now, by Equation (2.5) and choosing n = 3, k = 6 we have the

approximated solution x(t) =
[
x1(t) x2(t)

]T

x1(t) =


−1.000000001 + 8.333333337 ∗ 10−9t+ .9999999669t2 + 10−7t3, 0 ≤ t ≤ 1

6
,

−.9999999988 + 8.13333333 ∗ 10−9t+ .9999999829t2, 1
6
≤ t ≤ 1

3
,

−.9999999997 + 2.00 ∗ 10−10t+ t2, 1
3
≤ t ≤ 1

2
,

−.9999999927− 2.202222223 ∗ 10−8t+ 1.000000017t2, 1
2
≤ t ≤ 2

3
,

−.9999999902− 1.504444443 ∗ 10−8t+ .9999999963 ∗ t2 + 10( − 8) ∗ t3, 2
3
≤ t ≤ 5

6
,

−1.000000032 + 1.120666667 ∗ 10−7t+ .9999998702t2 + 5 ∗ 10−8t3, 5
6
≤ t ≤ 1,

x2(t) =


1.000000001 + 0.000011825t+ .9996447669t2 + 0.0023693t3, 0 ≤ t ≤ 1

6
,

1.000000001 + 0.00001180813339t+ .9996447663t2 + 0.0023695t3, 1
6
≤ t ≤ 1

3
,

.9999999645 + 0.00001211131104t+ .9996439669t2 + 0.0023702t3, 1
3
≤ t ≤ 1

2
,

1.000000063 + 0.00001151408882t+ .9996452169t2 + 0.0023693t3, 1
2
≤ t ≤ 2

3
,

.9581187057 + .1594325022t+ .8040813829t2 + 0.0783674t3, 2
3
≤ t ≤ 5

6
,

.9581181451 + .1594344559t+ .8040791002t2 + 0.0783683t3, 5
6
≤ t ≤ 1.

4. Conclusions

Using the Bezier curves, we provide the general algorithm for the
delay systems containing inverse time function and reduce it into a set
of algebraic equations. It is also shown that the results can be applied
to the boundary value problem. Numerical example shows that the
proposed method is efficient and very easy to use.
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Abstract. The optimal conditions for the fractional optimal con-
trol problems (FOCPs) are derived in which the fractional differen-
tial operators defined in terms of Caputo sense reduce this problem
to a system of fractional differential equations (FDEs) that is called
two-point boundary value (TPBV) problem. An approximate so-
lution of this problem is constructed by using the Legendre-Gauss
collocation method such that the exact boundary conditions are
satisfied. Several examples are given and the optimal errors are
obtained for the sake of comparison. The results show that the
technique introduced here is accurate and easily applied to solve
the FOCPs.

1. Introduction

Here, we would like to investigate the possibility of presence nu-
merical approximated solutions for a class of FOCPs. To proceed,
we achieved the necessary conditions of optimization for this class of
FOCPs with a system of FDEs. To solve this system, first using a mod-
ified approach Caputo fractional derivatives (CFD) that our problem
relies on. By using this approach and a joint application of Legendre

2010 Mathematics Subject Classification. Primary 26A33; Secondary 65L03,
49K30.

Key words and phrases. Fractional optimal control problem, Fractional differen-
tial equation, Legendre-Gauss collocation method.
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polynomials, we transform the original system of FDEs into a discrete
system of ordinary differential equations, in way by obtaining the op-
timal solutions of this system, we obtain the approximate solution of
the FOCP.

1.1. Fractional Calculus.

Definition 1.1. The left and right CFDs of order α ∈ R+ are de-
fined respectively, by C

t0
Dα

t f(x) := In−α
t0 t0D

n
t f(x) and C

t D
α
tf
f(x) :=

(−1)nIn−α
tf tD

n
tf
f(x) with n = [α] + 1; that is

C
t0
Dα

t f(x) :=
1

Γ(n− α)

∫ x

t0

f (n)(t)

(x− t)n−α−1
dt (1.1)

and

C
t D

α
tf
f(x) :=

(−1)n

Γ(n− α)

∫ tf

x

f (n)(t)

(t− x)n−α−1
dt (1.2)

where t0 ≤ x ≤ tf and f (n)(t) = dnf(t)
dtn

∈ L1[t0, tf ] is the ordinary
derivative of integer order n.

1.2. Legendre-Gauss Collocation Method. Any function f(t) ∈
L2[t0, tf ] can be approximated as follows [1]:

f(t) ∼
∞∑
n=0

ĉnP̂n(t); ĉn =
2n+ 1

tf − t0

∫ tf

t0

f(t)P̂n(t)dt, t ∈ [t0, tf ], (1.3)

where P̂n(t) = Pn

( 2t

tf − t0
− tf + t0

tf − t0

)
are the modified Legendre poly-

nomials (MLPs) of degree at most n. Therefore, if we have:
d

dt
u(t) = f(u(t), t), t0 ≤ t ≤ tf

u(t0) = u0,
(1.4)

the Legendre-Gauss collocation method for solving this problem is
equivalent to solve the following problem:

d

dt
uM(t̂Mj ) = f(uM(t̂Mj ), t̂Mj ),

uM(t0) = u0, 1 ≤ j ≤ M,
(1.5)

where uM(t) =
∑M

n=0 ĉnP̂n(t) and P̂M(t0, tf ) is the set of MLPs of

degree at most M and t̂Mj , 1 ≤ j ≤ M , are the nodes of the MLPs
interpolation on [t0, tf ]. To get the answer of equation (1.4), it’s enough
to obtain coefficients ĉn.
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2. Numerical Scheme for Solving FOCPs

Consider:

min J(u) =
1

2

∫ tf

t0

{
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

}
dt (2.1)

s.t. C
t0
Dα

t x(t) = A(t)x(t) +B(t)u(t),

x(t0) = x0, 0 ≤ α ≤ 1

The aim is to find a control vector u∗(t) such that the cost functional
(2.1) is minimized while the dynamic equality constraint is satisfied. So,

we define H(x(t), u(t), λ(t), t) =
1

2

{
xT (t)Q(t)x(t) + uT (t)R(t)u(t)

}
+

λT
{
A(t)x(t) + B(t)u(t)

}
where λ ∈ Rn is the vector of the Lagrange

multiplier. Then, we obtain the following TPBVP (see [2]):

C
t D

α
tf
λ(t) =

∂H

∂x
= Q(t)x(t) + AT (t)λ(t), λ(tf ) = 0 (2.2)

∂H

∂u
= R(t)u(t) +BT (t)λ(t) = 0

t0
CDα

t x(t) =
∂H

∂λ
= A(t)x(t) +B(t)u(t), x(t0) = x0.

Now, we use approximation [3]:

A(α,N)(tf − t)−αλ(t)−B(α,N)(tf − t)1−αλ̇(t) +
∑N

p=2C(α, p)(tf − t)1−p−αWp(t)

−λ(tf )(tf − t)−α

Γ(1− α)
= Q(t)x(t) + AT (t)λ(t),

A(α,N)(t− t0)
−αx(t) + B(α,N)(t− t0)

1−αẋ(t)−
∑N

p=2C(α, p)(t− t0)
1−p−αVp(t)

−x(t0)(t− t0)
−α

Γ(1− α)
= A(t)x(t)−B(t)R−1(t)BT (t)λ(t),

V̇p(t) = (1− p)(t− t0)
p−2x(t), Vp(t0) = 0, p = 2, 3, · · · , N,

Ẇp(t) = −(1− p)(tf − t)p−2λ(t), Wp(tf ) = 0, p = 2, 3, · · · , N,

x(t0) = x0, λ(tf ) = 0.

(2.3)

by assuming that λM(t) =
∑M

n=0 ânP̂n(t), x
M(t) =

∑M
n=0 b̂nP̂n(t), V

M
p (t) =∑M

n=0 ĉnP̂n(t), W
M
p (t) =

∑M
n=0 d̂nP̂n(t).
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3. Numerical Examples

Consider the following FOCP:

min J(u) =
1

2

∫ 1

0

{
(x(t)− t2)2 + (u(t)− t+ 1)2

}
dt (3.1)

s.t. C
0 D

α
t x(t) =

Γ(3)

Γ(2)
(x(t)− tu(t)), x(0) = 0.

The exact solution of this equation is given by x(t) = t2, u(t) = t − 1
when α = 1. Table 1 shows the maximum absolute errors of this
approximation for x(t) and u(t).

Table 1. Absolute errors of x(t) and u(t) at α = 1.

t x(t) u(t)
0.0 0.50E − 10 0
0.2 0.52E − 10 0.3E − 12
0.4 0.61E − 10 0.1E − 12
0.6 0.12E − 11 0.1E − 12
0.8 0.20E − 11 0.1E − 12
1.0 0.35E − 11 0.1E − 12

4. Conclusions

We developed a new approach for solving a class of FOCPs that is
based on the Legendre-Gauss collocation method. Numerical results
show that this approximation is computationally attractive and also
reduces keeping the accuracy of the solution.
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Abstract. Let π be the projective unitary representation of a
discrete countable Abelian group on a separable Hilbert space. If
the set Bπ of Bessel vectors for π is dense in H, then for any
vector x ∈ H the analysis operator θx make sense as a densely
defined operator from Bπ to l2(G)-space. Morever, we investigate
the concepts π-orthogonal and π-weakly equivalent. In addition,
two vectors x and y are called π-orthogonal if the range spaces of
θx and θy are orthogonal, and they are π-weakly equivalent if the
closure of the ranges of θx and θx are the same.

1. Introduction

We will present some results on a duality property for orthogonal
(that is, strongly disjoint) and weakly equivalent frame-generator vec-
tors for group representations and; more generally, projective unitary
representations. Our main results are Theorems 2.5 and 2.7. Our main
focus on this paper is to investigate the duality connections for gen-
eral unitary systems associated with projective unitary representations
of countable groups. We subsequently discovered that we were really
proving results for projective group representations. In this article we

Key words and phrases. Projective unitary representations, π-orthogonal, π-
weakly equivalent.
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will use the projective terminology in discussing our earlier results from
[1],[3] and [4]. The set of group representations of a group G is a subset
of the set of projective group representations. Moreover, most proofs
concerning frames for projective group representations are not much
more difficult. In most cases we will only state and prove the projec-
tive unitary representation case. Here we state some prerequisite that
will be needed in the sequel.

Definition 1.1. A frame for a Hilbert space H is a sequence {xn} in
H with the property that there exist positive constants A,B > 0 such
that

A∥x∥2 ≤
∑
g∈G

|⟨x, xn⟩|2 ≤ B∥x∥2, (1.1)

holds for every x ∈ H. A tight frame refers to the case when A = B,
and a Parseval frame refers to the case when A = B = 1. In the case
that (1.1) holds only for all x ∈ span{xn}, then we say that {xn} is a
frame sequence. If we require only the right-hand side of the inequality
(1.1), then {xn} is called a Bessel sequence.

In following we investigate the concepts of wandering frame collection
and complete wandering collection.

Definition 1.2. A collection of vectors W = {w1, · · · , wn} will be
called a wandering frame collection (or complete wandering frame col-
lection) for π if the collection S = {πgwi : g ∈ G, i = 1, · · · , n} is a
frame for its closed linear span (or for H).
A vector ξ ∈ H is called a complete frame vector, a complete tight frame
vector, or a complete Parseval frame vector for π if {π(g)ξ : g ∈ G} is a
frame, tight frame or Parseval frame, respectively for the whole Hibert
space H.

Let M be a subset of a Hilbert space H and let A be a subset of the
space B(H) of all the bounded linear operators on H. In what follows
we will use [M ] to denote the closed linear span of M . Also A′

denotes
the commutant {T ∈ B(H) : TA = AT, ∀A ∈ A} of A.

2. Main results

In this section, we introduce the concept of projective unitary rep-
resentation which is the extension of unitary representation.

Definition 2.1. A projective unitary representation π for a countable
group G is a mapping g −→ π(g) from G into the group U(H) of
all the unitary operators on a separable Hilbert space H such that
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π(g)π(h) = µ(g, h)π(gh) for all g, h ∈ G, where µ(g, h) is a scalar-
valued function on G × G taking values in the circle group T . This
function µ(g, h) is then called a multiplier of π. In this case, we also
say that π is a µ-projective unitary representation.

In the following lemma we establish some properties of µ(., .).

Lemma 2.2. The followings hold
(i) µ(g1, g2g3)µ(g2, g3) = µ(g1g2, g3)µ(g1, g2) for all g1, g2, g3 ∈ G.
(ii) µ(g, e) = µ(e, g) for all g ∈ G, where e denotes the identity of G.
Any function µ : G×G −→ T satisfying in (i) and (ii) will be called a
multiplier or 2-cocycle of G [2]. Also, from (i) and (ii) we have
(iii) µ(g, g−1) = µ(g−1, g) for all g ∈ G.

Proof. (i) Consider π(g1), π(g2), π(g3). We compute µ(g1, g2g3)µ(g2, g3) =
µ(g1g2, g3)µ(g1, g2) for all g1, g2, g3 ∈ G in two ways,

(π(g1)π(g2))π(g3) = µ(g1, g2)π(g1g2)π(g3)

= µ(g1, g2)µ(g1g2, g3)π(g1g2g3)

π(g1)(π(g2)π(g3)) = π(g1)µ(g2, g3)π(g2g3)

= µ(g2, g3)µ(g1, g2g3)π(g1g2g3).

Comparing these two relations, we have done.
(ii) Similarly, π(g)π(e) = µ(g, e)π(ge).
π(e)π(g) = µ(e, g)π(eg).
(iii) By considering g3 := g−1

2 in (i), µ(g1, g2g
−1
2 )µ(g2, g

−1
2 ) = µ(g1g2, g

−1
2 )µ(g1, g2).

Again we consider g1 := g−1
2 , µ(g2, g

−1
2 ) = µ(g−1

2 g2, g
−1
2 )µ(g−1

2 , g2). □

For any projective unitary representation π of a countable group G
on a Hilbert space H and x ∈ H, the analysis operator θx for x from
D(θx)(⊆ H) to l2(G) is defined by θx(y) =

∑
g∈G⟨y, π(g)x⟩χg, where

D(θx) = {y ∈ H :
∑

g∈G |⟨y, π(g)x⟩|2 < ∞} is the domain space of θx.

Clearly, Bπ ⊆ D(θx) holds for every x ∈ H. In the case that Bπ is dense
in H, we have θx as a densely defined and closable linear operator from
Bπ to l2(G). Next we investigate the concepts of π-orthogonal and
π-weakly equivalent.

Definition 2.3. We will say that two vectors x and y in H are π-
orthogonal if the ranges of θx and θy are orthogonal. The π-orthogonality
definition can be extended in an obvious way to a set of several (or even
infinitely many) vectors.
Two vectors x and y are π-weakly equivalent if the closures of the
ranges of θx and θy are the same.
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Lemma 2.4. The operators λg and rg are unitary operators on l2(G).
Also, we have: λgχh = µ(g, h)χgh, h ∈ G, and rgχh = µ(h, g−1)χhg−1 ,
h ∈ G. The following theorem characterizes the π-orthogonality and π-
weak equivalence in terms of the commutant of π(G).

Theorem 2.5. Let π be a projective unitary representation of a count-
able group G on a Hilbert space H such that Bπ is dense in H, and let
x, y ∈ H. Then,
(i)Vectors x and y are π-orthogonal, if and only if, [π(G)

′
x]⊥[π(G)

′
y]

(or equivalently, x⊥[π(G)
′
y]).

(ii) Vectors x and y are π-weakly equivalent, if and only if, [π(G)
′
x] =

[π(G)
′
y]. There is a 1-1 correspondence between the range of θx and

[π(G)
′
x]. In the rest of the paper we investigate the concept of orthog-

onality index of π.

Definition 2.6. For a projective unitary representation π of a count-
able group G on a Hilbert space H, we define the decomposition space
of π to be the subspace Dπ = span{θξ(H) : ξ ∈ Bπ} of l2(G). We
call N the orthogonality index of π if N is the smallest natural num-
ber such that there exist N strongly disjoint vectors ξi ∈ Bπ such
that {θξi(Bπ) : i = 1, · · · , N} generates Dπ. We say that π has
the orthogonality index ∞ if no such a finite integer N exists. The
cyclic multiplicity of π(G)

′
is the smallest natural number K such that

span{π(G)
′
xi : 1 ≤ i ≤ K} = H and [π(G)

′
xi]⊥[π(G)

′
yj] when i ̸= j.

The following theorem characterizes the orthogonality index of π by
using the commutant of π(G).

Theorem 2.7. [4] Let π be a projective unitary representation of a
countable group G on a Hilbert space H such that Bπ is dense in H.
Then, π has the orthogonality index N, if and only if, π(G)

′
has the

cyclic multiplicity N, where π(G)
′
denotes the commutant of π(G).
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Abstract. In this article, we study the dynamic behavior de-
scribing the transaction between bodies effective T-cell, naive T-
cell and chronic myelogenous leukemia in one side and drug in
the other side. The most important feature of the equations with
fractional order derivatives is their non-localization. Using this
system, we will study the optimized drug dose in chronic myel-
ogenous leukemia treatment with two methods namely targeted
therapy and broad cytotoxic therapy. Even the drug dose is im-
portant for cancer specialists, the weakness of immunology system
in cancer affected patients, may results in additional problems for
their body. Our goal is to find the best treatment regimens that
minimizes the cancer cell count and the deleterious effect of the
drugs for a given patint. We examine the optimal control setting
analytically, and include Grunwald-Letnikov numerical solutions
to illustrate the optimal regimens under various assumptions.
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1. Introduction

Chronic myelogenous leukemia (CML) is a kind of blood cancer,
and Fokas and Adimy have presented CML models in 1991 and 2005,
respectively. Recently, use of the models for analyzing the cancer reac-
tion against drug therapy could assist physicians in cancer treatment.
Therefore, using optimized control methods, which minimized damages
to body, the drug dose can be optimized. In this article, at first we will
introduce a fractional diffrential equations (FDE) model to present the
interaction between naive T-cells, effectors T-cells, and CML cancer
cells in cancer dormancy. Our goal in this work is to minimize the
cancer cell population and the detrimental effects of the two types of
drugs to the body of a hypothetical individual. We discuss the model
with controls and present the objective functional, state the necessary
conditions for the optimal control pair and charactrize optimal control
pair in terms of the solution of the optimality system, which determind
by using Grunwald-Letinkov method.

2. The CML Model

The model that we consider here is a three cells population model
describing the interaction between the cancer cell population (C), the
naive T-cell population (Tn) and effector T-cell population (Te) [1]. We
assume that the effector T-cells are specific to CML, activated by the
presence of CML antigen and if we suppose these three cells evolve with
independent variable time, then we can present our model in the form
of FDE as follows;

Dα
t Tn = sn − u2(t)dnTn − knTn

(
C

C + η

)
;

Dα
t Te = αnknTn

(
C

C + η

)
+ αeTe

(
C

C + η

)
− u2(t)deTe − γeCTe;

(2.1)

Dα
t C = (1− u1(t))rcCln

(
Cmax

C

)
− u2(t)dcC − γcCTe.

In this system Tn(0), Te(0) and C(0) are known initial values and time
dependent drug efficacies which incorporated by u1(t) and u2(t). All
of the parameter values in the above equations are assumed to be pos-
itive. Among the several discretization methods for Dα

t , we use the
one generated by Grunwald-Letnikov [2]. In this method Dαx(t) is
approximated by
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Dαx(t) = lim
l→∞

l−α

[ t
l
]∑

j=0

(−1)j
(
α

j

)
x(t− jl),

L is step size and [t]is the integer part of t. Using this method for

system (2.1), Dαx(t) is replaced by
∑[ tn

l
]

j=0 C
α
j x(tn−j), where tn = nl

and Cα
j is Grunwald-Letnikov coefficients defined by

Cα
0 = l−α Cα

j = (1− 1 + α

j
)cαj−1 j = 0, 1, 2, ....

Now, system (2.1) can be discretize as follows

(Tn)n =
sn −

∑n
j=1 c

α
j (Tn)n−j

c0 + dnu2(t) + kn(
cn

cn+η
)
,

(Te)n =
ankn(Tn)n(

cn
cn+η

)−
∑n

j=1 c
α
j (Te)n−j

c0 + deu2(t) + γeCn − ae(
cn

cn+η
)

,

(C)n =
−
∑n

j=1 c
α
j (C)n−j

C0 − (1− u1(t)rcln(
cmax

cn
) + dcu2(t) + γc(Te)n

.

3. Optimal Control Solution

Now we characterize the optimal control pair (u1
∗, u2

∗) which gives
the optimal drug dosage The existence of an optimal control pair is
guaranteed by the compactness of the control and state spaces and
the convexity of the problem. By considering the following objective
functional;

Minimize j(u1, u2) =

∫ tf

0

C(t) +
B1

2
u1(t) +

B2

2
u2(t))dt.

We apply the Pontryagin Maximum [3] Principle FDE from to obtain
the following optimality conditions; [4]

Dα
t φ1(t) = − ∂H

∂Tn

= φ1u2dn + φ1kn(
C

C + η
)− φ2αnkn(

C

C + η
);

Dα
t φ2(t) = −∂H

∂Te

= −φ2αe(
C

C + η
) + φ2u2de + φ2λeC + φ3λcC;

Dα
t φ3(t) = −∂H

∂C
= φ1knTn

η

(C + η)2
−(φ2η(C + η))2(αeTe+αnknTn)+φ2λeTe−

φ3((1− u1)rc(ln
Cmax

C
− 1)− u2dc − Teλc − 1);

147



AZIZI, FAKHARZADEH, HESAMEDDINI

Dα
t Tn(t) = − ∂H

∂φ1

= −sn + u2(t)dnTn + knTn

(
C

C + η

)
;

Dα
t Te(t) = − ∂H

∂φ2

= −αnknTn

(
C

C + η

)
−αeTe

(
C

C + η

)
+u2(t)deTe+γeCTe;

Dα
t C(t) = − ∂H

∂φ3

= −(1− u1(t))rcCln

(
Cmax

C

)
+ u2(t)dcC + γcCTe.

φi(tf ) = 0, i = 1, 2, 3.

where the Hamiltonian H is calculated as;

H = C(t) +
B1

2
u1(t) +

B2

2
u2(t)) + φ1(D

α
t Tn) + φ2(D

α
t Tn) + φ3(D

α
t C).

The Hamiltonian must be maximized with respect to the controls at
the optimal control pair; thus by regarding m1 < u1(t) < M1 and
m2 < u2(t) < M2, we would have:

u1
∗ =

φ3rcCln(Cmax

C
)

B1

; u2
∗ =

φ1dnTn + φ2deTe + φ3dcC

B2

.

Now we are able to use Grunwald-Letnikov method for discretzating
the optimal control program and the numerical results could be carried
out by using matlab software. The numerical simulation for a patient
determined by TABLE 1 will be demonstraited in oral presentation.

Table 1. Patient features

sn dn de dc kn η αn αe Cmax rc λe λc

0.29 0.35 .40 0.012 0.066 140 0.39 0.65 160000 0.011 0.079 0.058
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